

Unrestricted

I
Platone

PLATform for Operation of distribution NEtworks
I

D2.1 v1.0
Platone Platform requirements
and reference architecture (v1)

Deliverable D2.1

Platone – GA No 864300 Page 2 (75)

Project Name Platone

Contractual Delivery Date: 31.08.2020

Actual Delivery Date: 31.08.2020

Main responsible Ferdinando Bosco (ENG)

Workpackage: WP2 – Platform Implementation and Data Handling

Security: P

Nature: R

Version: v1.0

Total number of pages: 75

Abstract
The Platone Open Framework aims to create an open, flexible and secure system that enables
distribution grid flexibility/congestion management mechanisms, through innovative energy market
models involving all the possible actors at many levels (DSOs, TSOs, customers, aggregators). The
Platone Framework is an open source framework based on blockchain technology that enables a
secure and shared data management system, allows standard and flexible integration of external
solutions (e.g. legacy solutions), and is open to integration of external services through standardized
open application program interfaces (APIs).

This document mainly delivery two outputs: the Platone Reference Architecture and the Platone
Platforms Requirements.

The Platone Reference Architecture represents the software architecture of the Platone project,
including the list of components with their interfaces, and the list of functions.

The Platone Platform Requirements includes all the functional and non-functional requirements for
the design and development of the Platone Platforms.

The Platone Reference Architecture and Platone Platforms requirements are the basis for the
implementation of the Platone Open Framework that will be integrated, tested and evaluated in three
different demo sites: Greece, Germany and Italy. Each of these demo sites will integrate different
parts of the framework.

Keyword list
Platone Reference Architecture, Platone Platforms Requirements, Platone Open Framework, Open
Source, Blockchain, Energy Market

Disclaimer
All information provided reflects the status of the Platone project at the time of writing and may be
subject to change. All information reflects only the author’s view and the Innovation and Networks
Executive Agency (INEA) is not responsible for any use that may be made of the information
contained in this deliverable.

Deliverable D2.1

Platone – GA No 864300 Page 3 (75)

Executive Summary
The energy system is facing an incredible revolution whose end target is the creation of a new energy
scenario widely dominated by renewable energy sources and mostly based on distributed energy
generation. At the centre of this process is the distribution network where the majority of the new energy
sources are and will be connected. Flexibility is a key resource in a scenario in which the grid is more
and more changing from being a load-driven system to a generation-driven system, given the partial
control on energy intake from renewable energy sources. This process implies also that the changes
are not only related to the operational aspects but also to the market element. Digitalization is a key
enabler of this process, opening the way to smart and efficient management of data sources in a secure
way and making the separation between market and operation less and less meaningful.

Platone project proposes an innovative approach for supporting the DSOs and other involved
stakeholders in the energy transition phase. Platone aims to support the observability of the network
and the exploitation of the flexibility for solving both the volatility of renewable energy sources and the
less predictable consumption patterns.

The Platone solution consists of a layered set of platforms to meet the needs of system operators,
aggregators and end users, named Platone Open Framework.

The Platone Open Framework aims to create a fully replicable and scalable system that enables
distribution grid flexibility/congestion management mechanisms through Peer-to-peer (P2P market
models involving all the possible actors at many levels (DSOs, TSOs, customers, aggregators)). The
key components for an open framework are a secure shared data management system, standard and
flexible integration of external solutions (e.g. legacy solutions), and openness to external services
through standardized open application program interfaces (APIs). The Platone Open Framework offers
a two-layer platform and innovative components that allow targeting all the Platone objectives.

Deliverable D2.1

Platone – GA No 864300 Page 4 (75)

Authors, contributors and reviewers
Main responsible
Partner Name E-mail
ENG

Ferdinando Bosco

ferdinando.bosco@eng.it

Author(s)/contributor(s)
Partner Name
ENG

Ferdinando Bosco

Vincenzo Croce

SIEMENS

Brunella Conte

 Carlo Arrigoni
RWTH
 Jonas Baude
RSE
 Carlo Tornelli
 Fabrizio Garrone

 Antonio Vito Mantineo

Reviewer(s)
Partner Name
ARETI

Gabriele Fedele
 Antonio Vito Mantineo

Stavroula Tzioka

Eleni Daridou
Approver(s)
Partner Name
RWTH

Padraic McKeever

Deliverable D2.1

Platone – GA No 864300 Page 5 (75)

Table of Contents
1.1 Task 2.1 ... 7
1.2 Objectives of the Work Reported in this Deliverable ... 7
1.3 Outline of the Deliverable .. 7
1.4 How to Read this Document .. 7
2.1 Use Cases and General requirements .. 8
2.2 Concept architecture design and components description ... 8
2.3 Model for describing the architecture .. 9
2.4 Definition of technical requirements and specifications .. 11
3.1 Terminology ... 12
3.2 Concept Architecture ... 15
3.3 Blockchain Technology .. 17

3.3.1 Blockchain in the energy sector .. 17
3.3.2 Blockchain in Platone .. 18

3.4 Architectural components .. 19
3.5 Architectures of the Demos ... 21

3.5.1 Italian Demo Architecture .. 21
3.5.2 Greek Demo Architecture .. 23
3.5.3 German Demo Architecture ... 24

4.1 Platone Market Platform .. 28
4.1.1 Blockchain Service Layer and blockchain-driven energy marketplace 29

4.2 Platone DSO Technical Platform ... 30
4.2.1 Architectural Principles .. 31

4.3 Platone Blockchain Access Layer ... 32
4.3.1 Platone Blockchain Access Platform ... 33
4.3.2 Platone Shared Customer Database .. 33

4.4 Other Systems ... 34
4.4.1 Components and Services .. 34
4.4.2 Hardware devices .. 45

5.1 Interoperability Mechanisms and communication protocols .. 51
5.2 Processes and diagrams ... 51
7.1 Cloud Hosting and Software-as-a-service model .. 57
7.2 Installation on premises and containerization ... 57
7.3 Deployment Diagrams ... 59
A.1 Platone Architectural Components Detailed Specifications Template 74
A.2 Platone Hardware Components Detailed Specifications Template 74

Deliverable D2.1

Platone – GA No 864300 Page 6 (75)

1 Introduction
The project “PLATform for Operation of distribution Networks – Platone - aims to develop an architecture
for testing and implementing a data acquisitions system based on a two-layer approach that will allow
greater stakeholder involvement and will enable an efficient and smart network management. The tools
used for this purpose will be based on platforms able to receive data from different sources, such as
weather forecasting systems or distributed smart devices spread all over the urban area. These
platforms, by talking to each other and exchanging data, will allow collecting and elaborating information
useful for DSOs, transmission system operators (TSOs), customers and aggregators. In particular, the
DSO will invest in a standard, open, non-discriminating, economic dispute settlement blockchain-based
infrastructure, to give to both the customers and to the aggregator the possibility to more easily become
flexibility market players. This solution will see the DSO evolve into a new form: a market enabler for
end users and a smarter observer of the distribution network. By defining this innovative two-layer
architecture, Platone removes technical barriers to the achievement of a carbon-free society by 2050
[1], creating the ecosystem for new market mechanisms for a rapid roll out among DSOs and for a large
involvement of customers in the active management of grids and in the flexibility markets. The Platone
platform will be tested in three European trials in Greece, Germany and Italy and within the Distributed
Energy Management Initiative (DEMI) in Canada. The Platone consortium aims to go for a commercial
exploitation of the results after the project is finished. Within the H2020 programme “A single, smart
European electricity grid” Platone addresses the topic “Flexibility and retail market options for the
distribution grid”.

The Platone solution consists of a two-layer architecture named Platone Open Framework. The
Platone Open Framework includes the following components:

Blockchain Service Layer: this layer enables the deployment of different blockchain-based
components, providing a blockchain infrastructure and Smart Contracts services. In the context of
Platone, the Platone Market platform is an example of blockchain-based platform deployed on it.

Platone Market Platform: it allows the support of wide geographical area flexibility requests from TSOs
and local flexibility requests from DSOs. These are matched with offers coming from aggregators,
resolving conflicts according to pre-defined rules of dispatching priorities. All the market operations are
registered and certified within the blockchain service layer, ensuring a transparency, security and
trustworthiness among all the market participants.

Blockchain Access Layer: this layer adds a further level of security and trustworthiness to the
framework. It is an extension of the physical infrastructure and performs multiple tasks, among which
are data certification and automated flexibility execution through Smart Contracts. It includes the
Blockchain Access Platform and the Shared Customer Database.

Platone Blockchain Access platform: it implements all the functionalities offered by the blockchain
technology through smart contracts and provides an interface for the integration of the data coming from
the physical infrastructure.

Platone Shared Customer Database: it contains all the measurements, set points and other needed
data collected from customer physical infrastructure. It allows the other components of the Platone Open
Framework to access data in an easy way and without compromising security and privacy.

Platone DSO Technical Platform: it allows DSOs to manage the distribution grid in a secure, efficient
and stable manner. It is based on an open-source extensible microservices platform and allows to
deploy, as Docker containers, specific services for the DSOs and execute them on Kubernetes. The
Data Bus layer, included on the DSO Technical Platform, allows integration both of other components
of the Platone framework and of external components (e.g. DSO Management System) with a direct
connection to the classical supervisory control and data acquisition (SCADA) system adopted by the
DSO and served by standard communication protocols.

The design and the implementation of the Platone Platforms have been conducted starting from use
cases, scenarios and requirements defined together with demo participants. The Platone Open
Framework will be released as open source software for satisfying those requirements and ready to be
exploited, integrated, tested and evaluated in three different demo sites: Italy, Greece and Germany.

Deliverable D2.1

Platone – GA No 864300 Page 7 (75)

1.1 Task 2.1
Starting from overall requirements and use cases provided by T1.1, Task 2.1 focuses on the definition
of the Platone reference architecture and platforms requirements. The Platone reference architecture
will be the base for the implementation of the Platone framework including the development of the
components (T2.2, T2.3 and T2.5) the definition of the interoperability mechanisms and communication
protocols (T2.4) and the delivery of the Platone integrated framework prototype (T2.6)

Functional requirements will represent the list of functional properties that need to be implemented and
finally supported within the context of the Platone framework. Non-functional requirements will concern
security, performance, interoperability and scalability aspects.

1.2 Objectives of the Work Reported in this Deliverable
This deliverable provides the first version of the Platone Reference Architecture together with functional
and non-functional requirements expected for the Platone Platforms. An updated version of this
deliverable is expected on M30 (February 2022).

The main goal of the reference architecture is to provide an overview of the Platone Open Framework
from different point of views, in order to allow all stakeholders involved to understand the characteristics
and potential of the framework. In addition, the reference architecture together with functional and non-
functional requirements is the starting point for the design, development and release of the Platone
Platforms.

1.3 Outline of the Deliverable
Chapter 2 describes the methodology applied for design of Platone architecture and the collection of the
requirements.

Chapter 3 provides the Platone reference architecture. It mainly focus on blockchain technology, since
it is the core technology of the Platone Open Framework, the list of components expected to be
implemented or integrated within the framework and how the different demos’ architectures will exploit
the Platone Open Framework.

Chapter 4 represents the functionalities offered by the different Platone Platforms through a logical view
of the architecture. In the chapter the Platone Platforms are described more in detail and all the
information collected by other technical partners regarding other external systems are reported.

Chapter 5 represents the processes included in the Platone Open Framework through a process view.
It also includes a brief description of the interoperability mechanisms and communication protocols.

Chapter 6 represents the development view of the Platone architecture. It outlines all the technologies
and programming languages used within the different Platone Platforms.

Chapter 7 represents the deployment or physical view of the Platone architecture. It described the two
different approaches expected for the deployment of the Platone Platforms: Cloud (Software-as-a-
Service) or on premises (via Docker Containers).

Chapter 8 reports the list of functional and non-functional requirements expected for all the Platone
Platforms: Market Platform, DSO Technical Platform, Blockchain Access Platform and Shared Customer
Database.

Finally, Chapter 9 discusses the conclusions of the deliverable.

1.4 How to Read this Document
This document reports the Platone Reference Architecture with a big focus on Platone Platforms
implemented within WP2. Other external systems, implemented within other WPs (WP3, WP4 and WP5)
are listed and briefly described. A greater level of detail will be included in the deliverables of the
respective WPs.

Use cases and scenarios, used for defining the functional and non-functional requirements, are available
in D1.1 [2], D4.1 [3] and D5.2 [4].

Deliverable D2.1

Platone – GA No 864300 Page 8 (75)

2 Methodology
This section presents the approach and methodology that was followed to define the first version of the
Platone reference architecture and the list of functional and non-functional requirements, as well as the
technical specifications, for the architectural components.

Figure 1: Platone architecture design methodology

The activity carried out for the design of Platone's reference architecture and the definition of technical
requirements and specifications, is divided into 4 macro-phases:

1. Use cases definition and General requirements collection (conducted in WP1)
2. Concept architecture definition and collection of the architectural and hardware components

description and technical specifications
3. Design and representation of the architecture in a standard model
4. Definition of functional and non-functional requirements for the architectural components

2.1 Use Cases and General requirements
The first step for defining the Platone reference architecture and platforms’ requirements was conducted
in the context of WP1 but it was fundamental as input of the entire process.

As described in D1.1 [2] the result of this activity was to describe and compare the different Platone
demonstrations architecture, enhancing the understanding of the peculiarities of each demo. The output
of this activity was:

• The definition and comparison of the use cases for each different demo (using the IEC 62559
standard)

• The mapping on SGAM architecture at project level
• The collection of general requirements

2.2 Concept architecture design and components description
In this second stage we used the inputs coming from the first phase in WP1, together with the initial
architecture described in in Platone DoW [5] (Figure 2), for extending the concept of the Platone Open
Framework. The main goal in this stage was to refine the initial solution, to allow the integration of the
Platone framework within the different Demos architectures and define the functionalities expected.

Deliverable D2.1

Platone – GA No 864300 Page 9 (75)

Figure 2: Initial Platone Framework Architecture

As initial step, we provided to all the Demo leaders and technical partners a template for collecting
technical information about the architectural components (systems) and hardware components
(devices). These templates are attached in this document in the Annex A

Once collected all the information regarding the components, we arranged a first of two „Architecture
Workshops“ in which technical providers and demo leaders consulted each other to get a common idea
of what the Platone framework has to offer in terms of both architecture and functionalities.

The first Architectural Workshop (the second will be arranged for the second release of the Platone
architecture and technical requirements in M30, February 2022), was held the 15th of July 2020 and it
mainly focused on three activities:

• WP2 partners presented the concept architecture and WP2 architectural components to other
partners

• Demo Leaders (WP3, WP4 and WP5) presented their point of view about the Platone
architecture and how they foresee to use and exploit it in the different demo architectures

• Open discussion among all the partners with the main goal to find a common solution for the
architecture and define the list of functionalities expected

The output of this first phase was the Platone conceptual architecture and the list of the components
that are part of or interact with it.

2.3 Model for describing the architecture
Once defined the general concept of the Platone architecture, it was important to find an architectural
representation that would address all the concerns of the different stakeholders.

The 4 + 1 View Model [6] describes software architecture using five concurrent views, each of which
addresses a specific set of concerns and allows various stakeholders to find what they need in the
software architecture.

• Logical View: The components and the functionalities
• Process View: Communication between processes, components and services.

Deliverable D2.1

Platone – GA No 864300 Page 10 (75)

• Physical/Deployment View: deployment approaches
• Development/Implementation View: development details of the components
• Use Case View: the fifth view. The use cases are used to identify architectural elements and to

illustrate and validate the architecture design

Figure 3: 4 + 1 View Model

Following the 4 + 1 model, each view is described with “generic” notations: any notations, tools or design
methods can be used, especially for the logical and process analysis. UML offers many types of
diagrams useful to depict an application design or technical solution in detail.

These diagrams can be used to describe the different views of the 4+1 model. Figure 4 shows which
UML diagrams are best suited for each view.

However, the Platone Open Framework is more than a software solution but rather an enterprise
architecture proposal for DSOs. In order to represent the whole architecture and to show how
applications and infrastructure supports the DSO business processes we decided to don’t use UML for
drawing the diagrams but an alternative, compatible with UML that that focuses more on enterprise
modelling scope. We decided to use ArchiMate [7], an open and independent enterprise architecture
modelling language and Archi [8], an open source modelling toolkit to create ArchiMate models.

ArchiMate modelling language was developed to have a common language for many different areas of
an enterprise and was designed to co-exist with domain-specific languages like UML and BPMN. An
element from the ArchiMate model may be related to a single element in the UML diagram, but also to
a complete UML diagram (e.g. Sequence diagram, Activity diagram). Thus, the ArchiMate drawings will
be integrated with UML diagrams every time a more detailed specification is needed.

Deliverable D2.1

Platone – GA No 864300 Page 11 (75)

Figure 4: UML diagrams allocated to the views on the 4+1 View Model [9]

2.4 Definition of technical requirements and specifications
This final phase has the main goal to define all the technical requirements (functional and non-functional)
and specifications expected for the Platone platforms developed within the WP2.

For the requirements specification, the IEC 62559 standard use case template is used. Focusing on one
function or component at a time, the information exchanges with external actor are defined using
“Scenario” section of the template. This part describes how the selected component interact with other
parts of the system, thus specifying the functional requirements for the component. Moreover, the
template sections “Information exchanged” and “Protocol” allow to describe any type of non-functional
requirement (e.g. data models and formats, applicable standards, timing constraints, privacy and
security requirements). The use of suitable identifiers for each information exchanged or requirement,
with link to additional tables, enables a better management of non-functional requirements.

Deliverable D2.1

Platone – GA No 864300 Page 12 (75)

3 Reference Architecture
This chapter provides an overview of the Platone reference architecture introducing the two layers of
the Platone Framework along with the included architectural components.

3.1 Terminology
Table 1: Platone Terminology

Term Description

Platone Open Framework The Open Source Platone Framework that includes all the Platone
Platforms together with interface and mechanisms for communication
and integration with external systems

Platone Platforms The three core systems of the Platone Open Framework: Platone
Market Platform, Platone DSO Technical Platform and Platone
Blockchain Access Platform (that includes Platone Shared Customer
Database)

Platform Complex collection of systems, interfaces and processes integrated with
each other for providing a set of functionalities and services

Reference Architecture A reference architecture provides a template solution for an architecture
for a particular domain. It also provides a common vocabulary for all the
stakeholders involved.

Requirement A requirement is a single documented physical or functional need that a
particular design, product or process aims to satisfy.

Functional Requirement Functionalities, behaviour, and information that the solution needs

Non-Functional
Requirement

The conditions under which the solution must remain effective, qualities
that the solution must have, or constraints within which it must operate
(reliability, testability, maintainability, availability, performance)

Architectural View An architectural view is a representation of one or more aspects of an
architecture that illustrates how the architecture addresses the concerns
held by one or more of its stakeholders.

A View is a part of an Architecture Description that addresses a set of
related concerns and is tailored for specific stakeholders.

A View is specified by means of a Viewpoint, which prescribes the
concepts, models, analysis techniques, and visualizations that are
provided by the View.

Actor An actor classifies a role played by an external entity that interacts with
the subject (e.g., by exchanging signals and data), a human user of the
designed system (Person) some other system or hardware using
services of the subject.

Person A human user or entity that interacts with the subject under development

System A software (Component) or Hardware (Device) that interacts with the
subject under development

Deliverable D2.1

Platone – GA No 864300 Page 13 (75)

Component A Component represents an encapsulation of functionality aligned to
implementation structure, which is modular and replaceable.

A Component is a self-contained unit. As such, it is independently
deployable, re-usable, and replaceable. A Component performs one or
more Application Functions. It encapsulates its contents: its functionality
is only accessible through a set of Application Interfaces.

Device A Device represents a physical IT or OT resource upon which system
software and artifacts may be stored or deployed for execution.

A Device is a specialization of a Node that represents a physical IT or
OT resource with processing capability. It is typically used to model
hardware systems such as mainframes, PCs, or routers. Usually, they
are part of a node together with system software

Application Interface An Application Interface represents a point of access where application
services are made available to a user, another application component,
or a Node.

An Application Interface specifies how the functionality of a Component
can be accessed by other elements. An Application Interface exposes
Application Services to the environment.

Application Process An Application Process represents a sequence of application
behaviours that achieve a specific result.

An Application Process describes the internal behaviour performed by a
Component that is required to realize a set of services.

An Application Process may realize Application Services. Other
Application Services may serve (be used by) an Application Process.

Application Function An Application Function represents automated behaviour that can be
performed by an Application Component.

An Application Function describes the internal behaviour of an
Application Component. If this behaviour is exposed externally, this is
done through one or more services.

An Application Function may realize one or more Application Services.
Application Services of other Application Functions and Technology
Services may serve an Application Function.

Application Service An Application Service represents an explicitly defined exposed
application behaviour.

An Application Service exposes the functionality of components to their
environment. This functionality is accessed through one or more
Application Interfaces. An Application Service is realized by one or more
Application Functions that are performed by the component.

Flexibility Service The capability to change power supply/demand of the system as a whole
or a particular unit, for responding to particular needs of the network.

Some possible examples of flexibility services are load balancing,
congestion management, voltage control, inertial response and black
start.

Smart Grid Control The Smart Grid Control is a digitalization of the grid and smart meters
implemented for consumers. With Smart Grid Control, the demand and

Deliverable D2.1

Platone – GA No 864300 Page 14 (75)

supply of electricity can be adjusted with automated real time
communication between the devices. This can increase the flexibility of
the power system, increase the network capacity and reduce demand of
additional storage.

Flexibility Market Flexibility market help energy networks to manage energy flows and
create market signals to motivate changes in energy supply and
demand, integrating smart meters, smart appliances, renewable energy
resources and energy efficient resources accordingly.

In Platone context, the Market Platform is component that enables the
flexibility market, making available a virtual place where the requests of
flexibility match the offers

Platone Flexibility Market Open, non-discriminating, economic dispute settlement blockchain-
based infrastructure, to give to both customers and aggregators the
possibility to become flexibility market players more easily. This solution
will observe the DSO evolving into a new role: a market enabler for end
users and a smarter observer of the distribution network.

Blockchain A blockchain is a digital record of transactions. The name comes from
its structure, in which individual records, called blocks, are linked
together in a single list, called a chain.

Blockchain Infrastructure The blockchain data are stored on nodes (compare it to small servers).
Nodes can be any kind of device (mostly computers, laptops or even
bigger servers). All nodes on a blockchain are connected to each other
and they constantly exchange the latest blockchain data with each other
so all nodes stay up to date. They store, spread and preserve the
blockchain data. The entire connection of all these nodes forms the
blockchain infrastructure. [10]

Smart Contract A smart contract is a self-executing contract with the terms of the
agreement between buyer and seller being directly written into lines of
code. The code and the agreements contained therein exist across a
blockchain. The code controls the execution, and transactions are
trackable and irreversible.

The Smart Contracts facilitate, verify, or enforce the negotiation or
performance of a contract. Smart contracts allow the performing of
credible transactions without third parties. [11]

Interoperability Characteristic of a system to work with other systems in a clear and
standardized way, without any restrictions.

Interchangeability The ability that an object (device, component) can be replaced by
another without affecting system

Demo Site A demo site is a pilot test of the Platone Open Framework in a specific
geographic area. Platone has three demo sites: in Italy, Greece and
Germany. Each demo site will run its own demo architecture integrating
the Platone Open Framework. The demo sites will run in different
locations of a specific geographic area depends on the use cases.

Demo Architecture A specific demo architecture represents the list of specific demo
platforms and functionalities that will be used in the different demo sites.

https://blockgeeks.com/guides/different-smart-contract-platforms/

Deliverable D2.1

Platone – GA No 864300 Page 15 (75)

3.2 Concept Architecture
As already declared in introduction, one of the main goals of the Platone Project is to create an open
framework that is:

• Open, to be extended and integrated with external services providing standard interfaces
• Flexible, in terms of integration with already existing external solutions (e.g. legacy platforms)
• Secure, for data handling, using blockchain technology for data certification and integrity and

for data interoperability, using standard communication protocols and following the data security
and data privacy best practices

All these characteristics and objectives have led us to plan the release of the Platone Framework as an
Open Source Framework.

Open Source can bring the following benefits to the Platone Framework:

• Provide for better visibility, outreach and re-use of the results;
• Increase overall impact of the project on the scientific community;
• Pave the road to the Platone Open Framework becoming a valuable asset for DSOs and their

operation;
• Engage customers and other stakeholders creating communities with strong relationships and

common goals.

All the Platone Platforms, aim to pursue these objectives and to have these characteristics.

The Market Platform enables the creation of an open energy marketplace creating the ecosystem for a
rapid roll out among DSOs and for a large involvement of customers in the active management of grids
and in the flexibility markets.

Furthermore, the DSO Technical Platform ensures an easy integration of external systems both at data
level and service level.

Finally, the Blockchain Access Layer allows the integration of data coming from the physical
infrastructure adding a further level of security and trustworthiness to the framework, exploiting the
blockchain and smart contracts technologies.

The Figure 5 represents the reference architecture of the Platone Open Framework.

Deliverable D2.1

Platone – GA No 864300 Page 16 (75)

Figure 5: Platone Open Framework

Deliverable D2.1

Platone – GA No 864300 Page 17 (75)

3.3 Blockchain Technology
A Distributed Ledger (or Distributed Ledger Technology, DLT) is a distributed, tamper-proof registry, not
controlled by a single institution. The blockchain technology belongs to the category of Distributed
Ledger technologies in which transactions are grouped in blocks and chained through cryptographic
hashes into an ongoing chain.

Different blockchains may differ in the consensus mechanisms and programming capabilities.

Consensus Mechanisms:

Consensus mechanisms are protocols that make sure all blockchain nodes are synchronised with each
other and agree on on a single data value or a single state of the blockchain network.

These consensus mechanisms are crucial for a blockchain in order to function correctly. They make
sure everyone uses the same blockchain at the same moment. Everyone can submit things to be added
to the blockchain, so it is necessary that all transactions be constantly checked and that all nodes
constantly audit the blockchain. Without good consensus mechanisms, blockchains are at risk of various
attacks [12].

Before Bitcoin [13], there were many iterations of peer-to-peer decentralized currency systems that
failed because they were unable to answer the biggest problem when it came to reaching a consensus.
This problem is called “Byzantine Generals Problem”. [14] To solve this problem, Bitcoin introduced the
Proof-of-Work (PoW) [15] consensus mechanism and other blockchains implemented and used other
consensus mechanisms (such as Proof-of-Stake, Proof-of-Capacity, etc.) [16].

Considering the consensus mechanism, blockchains differ in the definition of the nodes’ participation in
the distributed network and the roles that they can perform. In particular, we can distinguish between
public and private blockchains.

Public Blockchains (also called “permissionless”) are defined in this way because they require no
authorization to access the network, perform transactions or participate in the verification and creation
of a new block. Anyone can participate (read and write) in the blockchain network. Public blockchains
are decentralised, no one has control over the network, and they are secure in the sense that the data
cannot be changed once validated on the blockchain.

On the other hand, a private blockchain is a permissioned blockchain. Permissioned Blockchains are
subject to a central authority that determines who can access is authorized to be part of the network.
This authority defines what roles a user can play within it, also defining rules on the visibility of recorded
data. The permissioned Blockchains therefore introduce the concept of governance and centralization
in a network that is born as absolutely decentralized and distributed.

Programming capabilities;

Considering the programming capabilities, we can differentiate between blockchains programmable via
simple scripting (e.g. Bitcoin Blockchain) and blockchains providing Turing-complete computational
capabilities, enabling the creation of “smart contracts” (e.g. Ethereum Blockchain).

Ethereum was the first blockchain supporting smart contracts and it is still the most notable example of
a Turing-complete programmable blockchain, allowing anyone to write smart contracts and
decentralized applications where they can create their own arbitrary rules for ownership, transaction
formats and state-transition functions. Smart contracts, cryptographic "boxes" that contain value and
only unlock it if certain conditions are met, can also be built on top of the platform, with vastly more
power than that offered by Bitcoin scripting because of the added powers of Turing-completeness, value-
awareness, blockchain-awareness and state [17].

3.3.1 Blockchain in the energy sector
Companies looking to implement blockchain technology into wholesale electricity distribution focus on
connecting end-users with the grid. Blockchain technologies combined with IoT devices enables
consumers to trade and purchase energy directly from the grid rather than from retailers. Blockchain
technology can provide consumers greater efficiency and control over their energy sources. Additionally,
an immutable ledger provides secure and real-time updates of energy usage data [18].

Deliverable D2.1

Platone – GA No 864300 Page 18 (75)

As reported in the “Blockchain in Energy” report [19] by Wood Makenzie shows that 59% of blockchain
energy projects are for the facilitation of electricity trading. This field is directly correlated with the primary
application of blockchain, the cryptocurrency trading.

Other relevant use cases are:

• the usage of blockchain to support an electric power system that keeps the current power grid
with grid transactions;

• the application of blockchain and cryptocurrencies to fund energy financing [20]
• the record of sustainability attributes
• the usage of charging infrastructure to sell charging services to EV owners [21]

More in general, the blockchain use cases in the energy sector can be classified into eight large groups,
namely [22]:

1. Metering, billing and security

2. Cryptocurrencies, tokens and investment
3. Decentralised energy trading
4. Green certificates and carbon trading
5. Grid management
6. IoT, smart devices, automation and asset management
7. Electric e-mobility
8. General purpose initiatives

3.3.2 Blockchain in Platone
Blockchain Technologies and Smart Contracts play a key role in the Platone framework architecture
since it is present in both the access layer and the service layer.

As described in Platone DoW [5], the usage of the blockchain technology at these two levels brings
several interesting advantages:

• new schemas of coordination among customers are possible such as Peer2Peer trading
• transparent unmodifiable data management and sharing is preserved and guaranteed
• multi-party data sharing can be seamlessly extended to data collected in the field for operational

purposes and not for market reasons.

Platone blockchain architecture will not start from scratch, but will leverage on the ongoing work carried
out by ENG partner in the H2020 eDREAM project [23]. Platone will evolve, adapt and upscale the
eDREAM open blockchain hybrid architecture, able to be deployed on the top of a variety of flexibility
devices or integrated with stakeholders legacy platforms (as aggregators or DSOs internal systems).

In particular, the Platone blockchain architecture will offer multi-value functionalities covering economic
transactions, business logic (e.g. grid control), data management and interoperability mechanisms.

Economic Transactions:

Ethereum smart contracts can directly manage economic transactions between two (or more) actors on
a blockchain, being completely self-enforcing. It is possible to transact cryptocurrency (Ether) or
customised tokens.

Currently there are two main categories of customized tokens on Ethereum: ERC-20 [24] for fungible
[25] tokens that are interchangeable and not unique and so can be used to represent a value like a
currency note, and ERC-721 [26] for non-fungible tokens, representing a unique asset like a collectible
good.

Platone will implement the usage of tokens as a way to reward or penalise users involved in Market
Operation. This approach will be better described in chapter 4.1.

Grid Control:

Platone provides mechanisms, based on smart contracts, for ensuring that the flexibility aggregation
and local energy exchange are trackable and tamper-proof.

Deliverable D2.1

Platone – GA No 864300 Page 19 (75)

Data Management:

All the data are registered at the level of an individual prosumer (smart meter) or individual market
operator (DSO/TSO/Aggregator) and then stored as immutable transactions. This allow provision of two
important features: data provenance and data immutability.

Energy data (including measurement and set points) are not stored “as is” in the blockchain
infrastructure since even if theoretically possible, the direct usage of a blockchain to store a big amount
of data is impractical in terms of costs and performance. For this reason, the Platone framework includes
an off-chain storage mechanism, based on the Shared Customer Database.

This approach will be better described in Chapter 4.3

Interoperability:
The replication and storage of data in a decentralised network (opposed to individual applications
accessing their own information) reduces the entry barrier for new players, leading to a more competitive
environment of products and services.
The Platone framework includes two different distributed ledgers: the Blockchain Service Layer and the
Blockchain Access Layer. In particular, in the context of the Italian demo two different partners (ENG
and APIO) will implement two different distributed ledgers solutions.

For this reason, protocols such as Interledger [27] (ILP, Interledger Protocol) or specific Interledger
component, as for example the SOFIE Interledger, will be investigated in the context of Platone, aiming
to achieve the integration of the two ledgers maintaining the advantages provided by the distributed
ledgers of transparency, security and trust.

In particular, SOFIE Interledger component [28] is an open source component developed and tested in
the context of H2020 SOFIE project [29], in which ENG is responsible of the application of the blockchain
technology in energy IoT context.

SOFIE Interledger component enables activity on one ledger to trigger activity on another ledger in an
atomic transaction. As shown in Figure 6, SOFIE Interledger links two different ledgers, one in the
Initiator role (Ledger A) and one in the Responder role (Ledger B). The Interledger component run on a
server and listens for events from the Initiator, which triggers the Interledger to call the Responder.

Figure 6: SOFIE Interledger component

3.4 Architectural components
During the design process of the architecture definition, the partners who will develop architectural
components have been identified. The main purpose of this phase was the identification of the
architectural components that should be developed or integrated within the overall Platone architecture.
During the first round of information collection, a basic template was created and circulated with

Deliverable D2.1

Platone – GA No 864300 Page 20 (75)

requested information concerning main functionalities, dependencies, inputs needed and outputs
provided. In collaboration with WP1 and the technical partners, a complete component list has been
drawn up. The main purpose here is to define the list of architectural components that will be
implemented (from scratch or starting from existing software) for satisfying the requirements expected
in the different use cases presented in WP1.

The list of architectural components along with the associated WP and partners’ responsibilities is
presented in the table below.

Table 2: List of Platone Architectural Components

Component WP Responsible
Partner

Contributing
Partners

Platone Market Platform WP2 ENG

Platone DSO Technical Platform WP2 RWTH ENG, SIEM

Platone Blockchain Access Platform WP2 ENG

Platone Shared Customer Database WP2 ENG

Aggregator Platform WP3 ACEA SIEM

Italian DSO Technical Platform WP3 ARETI SIEM

Italian Blockchain Access Platform WP3 APIO

Italian Shared Customer Database WP3 ARETI

Aggregator-Customer App WP3 ACEA APIO

Energy Management System WP3 APIO

Operational Systems (including Supervisory Control and
Data Acquisition - SCADA)

WP3 ARETI

TSO Simulator WP3 ENG

DSO Data Server WP4 HEDNO NTUA

Algorithm for DER control WP4 NTUA

State Estimation Tool WP4 NTUA

Algorithm for ancillary services WP4 NTUA

EMS - Avacon Local Flex Controller (A-LFC) WP5 Avacon

BESS Data Management Backend WP5 Avacon

Sensor & Controller Data Management Backend WP5 Avacon

For all the components, a detailed description is provided in Chapter 4 including the currently known
technical specifications.

Deliverable D2.1

Platone – GA No 864300 Page 21 (75)

3.5 Architectures of the Demos

3.5.1 Italian Demo Architecture
The Italian Demo Architecture, shown in Figure 7, represents the architecture that will be deployed in
the Italian demo site and was designed following the Use Cases UC-IT-1 and UC-IT-2, described in
D1.1 [2], and the related scenarios.

Figure 7: Italian Demo Architecture

The main purposes of the Italian Use Cases are to prevent congestion issues and avoid voltage
violations in transmission and distribution systems by exploiting flexibility resources, considering all the
phases concerned (procurement, activation and settlement) in the day-ahead and real time flexibility
market.

In particular, three different processes are considered:

• Detection of congestion issues or voltage violation on the distribution grid by the DSO Technical
Platform and definition of local flexibility requests, in the event the issue cannot be solved
through the DSOTP’s own solutions.

• Definition of congestion issues on the transmission network by the TSO (simulated in TSO
simulator) and request of flexibility to solve them in HV grid.

• Gathering by the Aggregator Platform of flexibility offers from customers in LV and MV and
offering to the Market.

These processes will be the starting point for the Flexibility Market operations.

All day ahead flexibility requests (from DSO and TSO) and offers (from Aggregator Platform) are stored
in the Platone Market Platform, which matches first the offers with the DSO’s requests, and orders them
economically; then, it repeats the same procedure with the TSO requests.

Deliverable D2.1

Platone – GA No 864300 Page 22 (75)

The list of awarded offers is sent to Italian DSOTP for evaluating the grid constraints violations. Finally,
the Platone Market Platform receives the list of offers compliant with local grid constraints and sends it
to all the stakeholders.

At this step, the Aggregator Platform sends a reservation to the FR Owner for the resources that will be
selected for the day-ahead market. The same steps are also followed in the Real Time sessions. Indeed,
in these Market sessions, the offers to be matched with DSO and TSO Real Time requests are the ones
still valid because not matched in previous market sessions.

The service activation phase begins when the DSO and TSO need flexibility. The DSO and the TSO
communicate to the Market Platform to move a specific offer. The Market Platform sends the order to
the Italian DSOTP, which divides it for every POD and dispatches the set point to the Light Nodes. The
Light Nodes make available the set points to the BMS and measures the electrical quantities to be sent
to the Italian SCD for evaluate the energy flexibility.

For the settlement phase, the Platone Market Platform acquires data from the Italian SCD and calculates
the difference between market baseline, evaluated by BRP, and electrical quantities measured in the
same time frame, uploaded in the Italian SCD by Light Nodes. The Platone Market Platform runs the
settlement algorithm and finds the outcomes. Settlement outcomes are transmitted to the Aggregator
Platform, the DSO and the TSO.

Finally, the DSO pays the flexibility to the Aggregator, who can pay the fee to the FR Owner.

More details in the Italian Demo architecture will be provided with the first release of the architecture
expected in M18 (February 2021).

Deliverable D2.1

Platone – GA No 864300 Page 23 (75)

3.5.2 Greek Demo Architecture
The Greek Demo Architecture, shown in Figure 8, represents the architecture that will be deployed in
the Greek demo site and was designed following the Use Cases UC-GR-1, UC-GR-2, UC-GR-3, UC-
GR-4 and UC-GR-5, described in D1.1 [2] and D4.1 [3], and the related scenarios.

Figure 8: Greek Demo Architecture

The Greek demo architecture uses as core components the Platone DSO Technical Platform (DSOTP),
and the Platone Blockchain Access Platform (BAP). DSOTP is the IT environment that includes all the
tools and services that enable advanced monitoring and control of the grid. BAP is the platform that
certifies measurements and customer data. The principal goals of Greek demo are to allow the DSO to
achieve better observability of the distribution network via an advanced SE tool and whether adopting
variable network tariffs, enables a more efficient operation of the distribution network or even the
provision of ancillary services to the TSO by the end users of the distribution network.

More details on Greek Demo architecture can be found on D4.1 [3].

Deliverable D2.1

Platone – GA No 864300 Page 24 (75)

3.5.3 German Demo Architecture
The German Demo Architecture, shown in Figure 9, represents the architecture that will be deployed in
the German demo site and was designed following the Use Cases UC-GE-1, UC-GE-2, UC-GE-3 and
UC-GE-4, described in D1.1 [2] and D5.2 [4], and the related scenarios.

Figure 9: German Demo architecture

The German Demo architecture foresees the integration of the EMS (named Avacon Local Flex-
Controller) with the Platone framework, with the main goal of monitoring and balancing a local network
and implementing new strategies of energy supply: In more detail:

• Maximize the consumption of local generation, minimize the demand from the feeding grid and
maximize the duration of an islanding period;

• Adhere to a fixed power value at the point of connection defined by a third party (e.g. DSO
request or in response to a market signal);

• Satisfy the energy deficit left by insufficient local generation within previously defined timeslots
(“Bulk supply”),

• Export the energy surplus generated by excess local generation within previously defined
timeslots (“Bulk-export”).

The Avacon Local Flex Controller (ALF-C) will monitor the Local Energy Community’s generation,
demand and available flexibility and send setpoints to local storages and flexible loads to fulfil requests

Deliverable D2.1

Platone – GA No 864300 Page 25 (75)

set by the user. The ALF-C will be integrated in the Platone DSOTP and connected to systems located
in the field, such as sensors in customer households and the secondary substation providing
measurement data. These systems, in turn, will be connected to Platone BAP for the certification of the
measurements.

More details on German Demo architecture can be found on D5.2 [4].

Deliverable D2.1

Platone – GA No 864300 Page 26 (75)

4 Logical View
The logical view presents the architectural elements that deliver the system’s functionalities to the end-
users.

More in detail the logical view includes:

• Functional Components constitute clearly defined parts of the system that have specific
responsibilities, perform distinct functions and dispose well-defined interfaces that allow them
to be connected with other components.

• Dependencies are channels, indicating how the functions of a component can be made
available to other components. An interface is defined by the inputs, outputs and semantics of
the provided operation/interaction.

• External (third-party) entities are connectors (described as dependencies) which represent

other systems, software programs, hardware devices or any other entity that communicates with
the system.

The Figure 10 represents the logical view of Platone Architecture with a big focus on business
processes, actors and architectural components involved.

Deliverable D2.1

Platone – GA No 864300 Page 27 (75)

Figure 10: Logical View and functional components

Deliverable D2.1

Platone – GA No 864300 Page 28 (75)

The following paragraphs provide a detailed description of the core architectural components of the
Platone framework, named Platone Platforms, and a brief overview of the other systems (both
architectural components and hardware devices) that will interact with the Platone framework.

4.1 Platone Market Platform
The Platone Market platform is one of the core components of the Platone Open Framework. This is a
blockchain-based platform that enables the management of wide geographical area flexibility requests
from TSOs and local flexibility requests from DSOs. The flexibility requests are matched with offers
coming from aggregators, resolving conflicts according to pre-defined rules of dispatching priorities. All
the market operations are registered and certified within the blockchain service layer, ensuring a higher
level of transparency, security and trustworthiness among all the market players.

The Figure 11 represents the internal architecture of the Market Platform:

Figure 11: Platone Market Platform Architecture

The Market Platform consists of a three-layer architecture:

• UI Layer includes a web dashboard that allows to market players (DSOs, TSOs and
aggregators) to manage their own market operations;

• Services Layer provides the business logic, including the market-clearing tool, the flexibility
services, the settlement services and smart contract service;

• Data Layer provides the management of the market data and the registration of the market
operations within blockchain infrastructure.

The communication layer allows the integration of external components and internal communication
among the different layers within the Market Platform. It provides both synchronous communication
interfaces (REST APIs) and asynchronous communication interfaces (Message Broker).

In particular, the Market Platform provides the following main functionalities.

Flexibility Services and Clearing Market Algorithm:

The Market Platform is able to receive flexibility services requests from DSOs and TSOs together with
flexibility offers from aggregators, via REST APIs or through the web platform.

Deliverable D2.1

Platone – GA No 864300 Page 29 (75)

After the closing of market session, the Market Platform performs an economic phase of the Market
Clearing, matching the DSOs and TSOs requests with the aggregators’ offers. This clearing activity has
the main purpose of satisfying the request of the DSO, which therefore will always have priority over
other requests.

More in detail, the Market Platform’s first step is to find, among the various offers of the aggregators,
those that meet the DSO request. All the offers that fulfil the request are ordered according to an
optimisation algorithm, based on a configurable multi-objective function. This optimization algorithm is
based on a Non-Dominated Sorting Genetic Algorithm (NSGA-II) which provides a set of optimized
solutions characterised by different suitable values with respect to the different objective functions of the
optimisation process. The objective functions are defined following the indications coming from the user
requirements and in particular from the DSO and could include for example, in addition to an economic
factor, also an index of reliability of the flexibility providers involved (Aggregators and end-users).

Once the DSO request is satisfied, the Market Platform also tries to satisfy any remaining TSO requests.
The result of this activity are the market outcomes.

Service Activation:

After the market clearing and technical validation of the market outcomes, the Market Platform is able
to receive the requests of activation provided by DSOs and TSOs (via REST APIs) and to provide the
aggregation of these activation requests to all the other stakeholders through the communication layer.
The output is a list of set points to be activated by the different PODs.

Smart Contract Services:

The Platone Market Platform is integrated on a Blockchain Service Layer that implements a set of
functionalities through Smart Contracts. This integration allows enabling a blockchain-driven energy
marketplace. The blockchain service layer and the smart contract based features are treated more in
detail in chapter 4.1.1.

Settlement:

After the flexibility services execution, the Market Platform acquires the data for the validation of the
flexibility, analyses this data together with the respective flexibility offers, creates the Settlement
outcomes, and communicates them to market players.

This process allows to DSO (or TSO if the related service was requested from it) to pay for the received
flexibility service and to the aggregator to perform the settlement of the flexibility resources under their
jurisdiction.

4.1.1 Blockchain Service Layer and blockchain-driven energy marketplace
The blockchain service layer is based on a blockchain infrastructure that included Ethereum blockchain
nodes and smart contracts services.

In particular, the smart contracts ensure that all the processes and data flow included on the Market
Platform are certified thanks to blockchain infrastructure as well as to “tokenize” the settlement outcomes
enabling a token-based remuneration process that the DSO and/or TSO can exploit for payments.

The remuneration process is implemented with the usage of ERC-20 tokens [24] as a way to reward or
penalise users involved in Market Operation. In particular, the tokens will be defined in a specific smart
contract and assigned to prosumers in exchange for the flexibility provided. The policy for the token
assignment is completely customizable and the aggregator will be responsible for specifying this
policies.

All these characteristics enable a blockchain-driven energy marketplace that:

• Ensures energy transactions certification;
• Tracks and controls the registration and validation of energy data and market data;
• Publishes bid/offer actions by Market Participants.
• Performs energy bids/offers matching and clearing price computation
• Performs a fully-transparent settlement based on tokenization

Deliverable D2.1

Platone – GA No 864300 Page 30 (75)

4.2 Platone DSO Technical Platform
The Platone DSO Technical Platform is another core component of the Platone Framework. The
platform is based on work done in the H2020 project SOGNO [30] [31] and is capable of hosting different
micro services aiming at simplifying e.g., the grid monitoring or market interactions for a DSO.

The DSO Technical Platform should respond to specific technical and operational requirements,
including:

• High availability
• Scalability both horizontally and vertically
• Flexibility and modularity
• Centralized monitoring and logging
• Reduced operational cost

Figure 12 illustrates the architecture of the DSO Technical Platform. The core component of the DSO
Technical Platform is the data bus. It is implemented by means of a message broker to which all services
can publish and / or subscribe in order to exchange data with other services, with field devices, or with
external systems. Data from field devices or external systems can be made available in the data bus
either directly or through the Communication Layer of the Platone Market Platform as described and
illustrated in Chapter 4.1. Depending on the use case requirements, this integration can be unidirectional
or bidirectional meaning data can be sent back (e.g. set points) to field devices or external systems.

Figure 12: Platone DSO Technical Platform architecture

Data persistency within the platform is achieved by a dedicated service that stores data persistently in
a database. The database will be suitable for storing time series data (e.g. measurements). The data in
the database will be available to the services on the platform in order to avoid redundant databases for
multiple services. Furthermore, data can be visualized in custom Grafana [32] based dashboards.

All services running on the DSO Technical Platform are deployed in individual containers that are
orchestrated by Kubernetes [33], an open-source system for automating deployment, scaling, and
management of containerized applications. Besides the main business logic of the service, all containers
are equipped with a platform specific interface to the data bus and optionally a data base interface and/or
a REST API endpoint. The programming language for implementing the main algorithms or business
logic of the service is not specified in order to reduce development overhead for bringing new or existing

Deliverable D2.1

Platone – GA No 864300 Page 31 (75)

services to the platform. A future release of the platform might also contain a dashboard for simple
creation and configuration of services.

For the initial release, services running on the DSO Technical Platform can be started with a static
configuration or can implement custom service APIs. These APIs allow e.g. for a service configuration
or for triggering of services on request, e.g. by an external system. These APIs can be synchronous
REST APIs or asynchronous services based on the central data bus of the platform.

4.2.1 Architectural Principles
In order to satisfy all the requirements listed at the beginning of the Chapter 4.2, several key architectural
principles have been identified and will be followed

• Microservices

• Strong decoupling

• Openness

• Data Security

• Continuous Supervision (monitoring and logging)

Microservices:

Core system functions are divided into microservices. Microservices contribute to assure the high
availability and scalability of the system. Microservices’ communication can be both synchronous and
asynchronous.

Synchronous communication is based on REST API or Web Services. Every microservice can offer a
REST API/Web Services to access its data and interact with it. The API model can be divided in two
macro API sets: private (platform-internal) APIs and public (platform-external) APIs.

Asynchronous communication between services is based on the Data Bus. Once data are on the bus,
they are handled by a set of services that are able to scale up based on system load requirements. The
microservices running on the platform can be orchestrated with container orchestration solutions such
as Kubernetes in order to achieve high scalability and to ensure the availability of the services.

Strong decoupling:

Each system and architectural component run independently. The specific communication pattern
exploiting REST APIs/Web Services between the main system modules enables isolation and
decoupling of internal functionalities.

Openness:

The system is open to be integrated, using standard IT interfaces, into a larger ecosystem of
applications, including business intelligence and data analytics.

Data Security:

The system covers data security and privacy aspects following the best for protecting data from
unauthorized access and data corruption throughout its lifecycle. Data security includes data encryption,
hashing, tokenization, and key management practices that protect data across all applications and
platforms.

Continuous Supervision (monitoring and logging):

Applications developed using the microservice architecture need to be monitored as any other type of
distributed system. DSO Technical Platform should provide a centralized solution for monitoring and
logging for all microservices and components needed by the platform.

Deliverable D2.1

Platone – GA No 864300 Page 32 (75)

4.3 Platone Blockchain Access Layer
The Blockchain access layer, as shown in Figure 13, is an architectural layer included in the Platone
Open Framework that adds a further level of security and trustworthiness to the framework. It is an
extension of physical infrastructure and performs multiple tasks, among which the data certification and
automated flexibility execution through Smart Contracts.

Figure 13: Platone Blockchain Access Layer architecture

This architectural layer includes two different components:

• Platone Blockchain Access platform, that implements all the functionalities offered by the
blockchain technology through smart contracts and provides an interface for the integration of
the data coming from the physical infrastructure

• Platone Shared customer database: it contains all the measurements, set points and other
needed data collected from customer physical infrastructure. It allows the other components
and stakeholders of the Platone Open Framework to access data in an easy way and without
compromising security and privacy.

It also includes:

• Integration Layer, that allows the integration of data coming from the smart meters using
standard communication protocols for IoT (e.g. MQTT)

• Communication Layer, enable the communication among the different internal layers of the
Blockchain Platform, the SCD and external components (e.g. DSO Technical Platform). It will
provide standard communication mechanisms like REST APIs and Message Broker.

Deliverable D2.1

Platone – GA No 864300 Page 33 (75)

• Blockchain infrastructure, include a private implementation of Ethereum Blockchain
infrastructure including some Ethereum nodes. The blockchain nodes will contain all the
transactions registered on the blockchain as well as the smart contracts deployed for
implementing the features offered by the Blockchain Access Platform. The blockchain nodes
may or may not coincide with the actors involved in the electrical grid. It is realistic to imagine a
scenario in which large producers may afford the host locally their own full node, while small
prosumers or consumers may host a Light Node (e.g. in the Italian Demo architecture, see Table
21) or choose to trust a third party node.

4.3.1 Platone Blockchain Access Platform
The blockchain technology used in the Platone project offers multiple levels of functionalities. In
particular, the Blockchain Access Layer will provide:

• Data Management, all energy-monitored data are registered at the level of an individual
prosumer (smart meter) and then stored as immutable energy transactions. This allows
assurance of the provenance and the immutability of the energy data

• Grid Control, the blockchain can be used to control flexibility services and energy transactions.
Smart contracts can be applied to prosumers’ flexibility aggregation and local energy trading,
making the transactions trackable and tamper-proof.

Data Immutability:

Blockchain technology can guarantee the immutability of data records once those records have entered
the system. The data structures used to store the energy transactions in the ledger assure the
provenance property by enacting their tracking back until the moment of their registration in the
blockchain.

The distributed ledger is a collection of blocks, linked back using hash pointers, each block storing a set
of valid transactions on the registered digital assets. The linked list is an append-only data structure.
Any changes that would appear in previous registered nodes would lead to inconsistencies, because
the hash pointer of that block would change. If one needs to change the content of a previous block, all
the following blocks will need to be re-hashed and re-linked to obtain a consistent updated data
structure. The advantage brought by this structure is the tamper proof log on all the transactional
information contained in the blocks. Furthermore, because this is an append-only type of data structure
(new blocks are always added at the head of the chain) it offers reliable historical information and
preserves the order in which the energy transactions are registered.

The probability of changing the value of the transacted energy asset in a block by an attacker decreases
with the number of blocks following that block in the append-only linked list.

Data Provenance:

In order to ensure the ownership of energy data, the prosumer provides the signature over the transfer
transaction showing that the energy asset is his/hers, thus authenticating and validating the transfer.
Whenever a new prosumer joins the blockchain network, a new account and associated contract is
created, and the user account address is linked to its smart meter.

In this way, each prosumer who generates energy can register energy assets in the distributed ledger,
based on the information provided by the associated smart meter, by signing and registering an energy
transaction having as a receiver its own contract account address.

4.3.2 Platone Shared Customer Database
Even if theoretically possible, the direct usage of a blockchain for data storage is impractical in terms of
costs and performance. While for some kind of high-value transactions this cost may be affordable (e.g.
the notarisation of a real-estate transfer), for frequent low-value transactions, such as fifteen minutes
readings from a smart meter, this becomes a prohibitive limit. To minimise the costs, and avoid
fluctuations, it is crucial to optimise resources, minimising the usage of the on-chain storage capabilities.

Deliverable D2.1

Platone – GA No 864300 Page 34 (75)

Now, in M12 of the project, we are investigating two possible solutions: The first one is a hybrid solution
built on top of distributed databases (e.g. Cassandra [34]) and Ethereum smart contracts, while the
second one is based on the integration of BigchainDB [35] with the integration layer.

The first solution was already tested within eDREAM project and proposes a technique for tamper-
evident registration of smart meters’ energy data and associated energy transactions using digital
fingerprinting which allows the energy transaction to be linked with the hashed version registered on the
blockchain, while the plain data is stored off-chain. The prototype was implemented using Ethereum and
smart contracts for the on-chain components, Cassandra as database and RabbitMQ as messaging
broker [36].

4.4 Other Systems
As described in the methodology chapter, the Platone framework will interact with other components
provided by demo WPs. Below are presented the main characteristics of these systems that will be
described in detail in deliverables of specific demo WPs at later stages of the project.

4.4.1 Components and Services

4.4.1.1 German Demo
Table 3: ALF-C technical details

Name of
Component/Service:

Avacon Local Flex-Controller (ALF-C)

Type Service

Functionality ALF-C monitors the state of network elements and behaviour of

customers, predicts behaviour and energy demand & generation and

controls flexible elements in order to maintain a predefined set point

for the power exchange between local system and mid voltage

feeder.

Input Connections &
Interfaces

- Field Data (PMU): P, V, I, cos(phi)

- Customer Data: Demand, generation (web service)

- Battery System Information: P(t), SOE, SOC, alarms

(MODBUS TCP via LTE)

- Weather data & forecast (web service / API)

Output Connections &
Interfaces

- Set point P(t) for battery (sub 60 sec.)

- Set point P(t) for flexible customer (domestic battery, heat

pump, A/C)(15-min)

- Alarm (technician, fire brigade)

Software
Requirements/Development
Language

- Deployed in MS Azure, use case algorithms realized in

Python

- Utilizes Platone Technical Platform & Blockchain Access

Layer for upstream data

Hardware Requirements Cloud deployment, no specific requirements identified so far

Deliverable D2.1

Platone – GA No 864300 Page 35 (75)

Status of the development
of the component

To be developed from scratch

WP and Task reference WP5 - T5.2, T5.3
Table 4: Sensor & Controller Data Management Backend technical details

Name of
Component/Service:

Sensor & Controller Data Management Backend

Type Service

Functionality The Sensor & Controller Data Management Backend handles first

level data acquisition from household batteries and relays set points

from ALF-C to the household. It monitors the situation of the battery

system and provides required data to ALF-C.

Input Connections &
Interfaces

- Battery sensors (cell-level, system level, SOE, SOC)

- Set point P(t) from ALF-C (15-Min)

Output Connections &
Interfaces

- ALF-C (all relevant system data & alarms)

Software
Requirements/Development
Language

- Proprietary software provided by battery vendor

Hardware Requirements Cloud-based

Status of the development
of the component

Commercially available

WP and Task reference WP5 - T5.2, T5.3

Table 5: BESS Data Management Backend technical details

Name of
Component/Service:

BESS Data Management Backend

Type Service

Functionality The BESS Data Management Backend handles first level data

acquisition from the BESS and relays set points from ALF-C to

BESS. It monitors the situation of the battery system and provides

required data to ALF-C and other services (e.g. fire brigade).

Input Connections &
Interfaces

- Battery sensors (cell-level, system level, point of connection,

SOE, SOC, hazards /alarms)

- Set point P(t) from ALF-C (sub 60-sec)

Output Connections &
Interfaces

- ALF-C (all relevant system data & alarms)

Deliverable D2.1

Platone – GA No 864300 Page 36 (75)

Software
Requirements/Development
Language

- Proprietary software provided by battery vendor

Hardware Requirements Cloud-based

Status of the development
of the component

Commercially available

WP and Task reference WP5 - T5.2, T5.3

4.4.1.2 Greek Demo
Table 6: DSO Data Server technical details

Name of
Component/Service:

DSO Data Server

Type Component

Functionality A dockerised-database that hosts DSO data (both master data and

AMR-metrics for MV and LV customers).

Input Connections &
Interfaces

Data from different telemetering centers is assembled and uniformed

in an offline API with the purpose of producing an incremental

Docker image. The image is uploaded on Docker Hub image

repository (process similar to using an ftp service, but with Docker)

and then downloaded and executed from the Data-Server side.

Output Connections &
Interfaces

Another API was developed with the purpose of connecting and

querying the database and gathering the appropriate data

(scheduled every 15 mins). The API then transforms the data into an

xml whose data model, format and structure are defined in the CIM

61968-9 standard. Finally, it publishes the produced xml into a

broker using MQTT protocol.

Software
Requirements/Development
Language

The database version used is the corresponding Docker image of

MYSQL 8.0.19. The APIs are written in the Python programming-

language using various external packages and libraries, to name the

most important mysql-connector or Sqlalchemy for database

connection handling and Pandas library for most data-related tasks.

Hardware Requirements No specific hardware requirements identified so far

Status of the development
of the component

Partially developed

WP and Task reference WP4

Table 7: Algorithm for ancillary services technical details

Name of
Component/Service:

Algorithm for ancillary services

Deliverable D2.1

Platone – GA No 864300 Page 37 (75)

Type Service

Functionality This component will generate appropriate charges for using the

distribution network to incentivize optimal DER operation by

Aggregators, avoiding any network limit violations when a request

for an ancillary service (here Frequency Support) arrives to the

Aggregator.

Input Connections &
Interfaces

State Estimation Tool

Output Connections &
Interfaces

Network prices (tariffs) are send to Aggregators

Software
Requirements/Development
Language

This algorithm is developed in Julia programming language using

JuMP and Gurobi Solver.

Hardware Requirements An ordinary computer

Status of the development
of the component

Design completed

WP and Task reference WP4, Task 4.3.1

Table 8: Algorithm for DER control technical details

Name of
Component/Service:

Algorithm for DER control

Type Service

Functionality This component will generate appropriate charges for using the

distribution network to incentivize optimal DER operation by

Aggregators, while mitigating any network limit violations. Line and

voltage limits are concerned

Input Connections &
Interfaces

State Estimation Tool

Output Connections &
Interfaces

Network prices (tariffs) are send to Aggregators

Software
Requirements/Development
Language

This algorithm is developed in Julia programming language using

JuMP and Gurobi Solver.

Hardware Requirements An ordinary computer

Status of the development
of the component

Design completed

WP and Task reference WP4, Task 4.4.1

Deliverable D2.1

Platone – GA No 864300 Page 38 (75)

Table 9: State Estimation Tool technical details

Name of
Component/Service:

State estimation tool

Type Service

Functionality The State Estimation Tool aims to ensure that high quality estimative

of the network state will be acquired in real-time conditions under

various network operating scenarios. This tool filters the available

measurement data, comprising actual measurements obtained from

active metering devices and pseudo-measurements, i.e. data

derived from load forecasting or RES scheduling for network

observability accomplishment, in order to identify measurement with

gross errors (bad data), to suppress measurement errors, to

reconcile inconsistent data and, ultimately, to estimate the actual

operational network state.

Input Connections &
Interfaces

SCADA, DMS, GIS, ΑΜR, DSO Data server

Output Connections &
Interfaces

Algorithms for DER control and Ancillary Services

Software
Requirements/Development
Language

N/A

Hardware Requirements N/A

Status of the development
of the component

Design completed

WP and Task reference WP4, Task 4.2

4.4.1.3 Italian Demo
Table 10: Operation Systems technical details

Name of
Component/Service:

Operational Systems

(including Supervisory Control and Data Acquisition - SCADA)

Type Component

Functionality Control system architecture managed by DSO for high-level process

supervisory management, its main functionalities are:

- Network diagnostic;

- Remote grid control management;

- Gather signals and measurement from the fields

Deliverable D2.1

Platone – GA No 864300 Page 39 (75)

Input Connections &
Interfaces

Voltage and current sensors in Primary substation (IEC 61850)

Remote Terminal Unit in Secondary Substation (IEC 61850)

Output Connections &
Interfaces

To be defined

Software
Requirements/Development
Language

C, Java, Javascript

Hardware Requirements Virtualized hardware:
VMware ESXi 6.7 model HPE ProLiant DL380 Gen10 equipped with

CPU Xeon Platinum, 256GB DDR4 RAM, double power supply

500W, 400Gb SSD MU, Smart Array P440/2G Controller, 4 NIC

1Gb, 2 NIC 10Gb

Standard virtual machine:

 vCPU 4
 VM RAM Cfg (GB) 16
 Host RAM Use (GB) 10
 VM DISK Cfg (GB) 96
 VM DISK Actual (GB) 48

Status of the development
of the component

Already developed

WP and Task reference WP3 – T3.3.1

Table 11: Aggregator Platform technical details

Name of
Component/Service:

Aggregator Platform

Type Component

Functionality Platforms used by Aggregator to take part in the flexibility market,

the main functionalities are:

- Evaluating the baseline of DER group;

- Defining the volume-price for the offer;

- Despatching the flexibility order;

- Defining the customer revenues and penalties.

Input Connections &
Interfaces

• Market Platform (REST APIs)

• SCD (REST APIs and/or Message Broker)

Output Connections &
Interfaces

• Market Platform (REST APIs)

• SCD (REST APIs and/or Message Broker)

Software
Requirements/Development
Language

This platform follows the Microservices Architecture patterns.

The microservices are organized in the following packages:

Deliverable D2.1

Platone – GA No 864300 Page 40 (75)

• Data acquisition Package

• Core Package

• Site Package

• Energy Management Package

• Algorithms Package

The development languages and technology used are:

• Node.js/JavaScript

• Kafka

• Redis

• Docker

• Kubernetes

• Sencha Extjs

• React

• MongoDB

• MQTT

• C

Hardware Requirements Platform available on cloud.

It is deployed on Kubernetes. Depending on the scalability needs org

the business logic, its microservices are grouped into Kubernetes

pods and released or updated independently.

Status of the development
of the component

Partially developed: the core of the platform already exists. New

services and interfaces will be developed

WP and Task reference WP3 – T3.4.1

Table 12: App Aggregator-Customer technical details

Name of
Component/Service:

App Aggregator-Customer

[Included in Aggregator Platform]

Type Component

Functionality Application to increase the awareness and the involvement of the

customer in the flexibility market

Input Connections &
Interfaces

• Aggregator Platform (REST APIs)

Output Connections &
Interfaces

• End User (REST APIs)

Deliverable D2.1

Platone – GA No 864300 Page 41 (75)

Software
Requirements/Development
Language

Cross Platform Framework for mobile/desktop applications (Ionic)

ReactJS as UI Library

Typescript as programming language

Hardware Requirements No specific Hardware requirements identified so far

Status of the development
of the component

to be developed from scratch

WP and Task reference WP3 – T3.4

Table 13: Italian Blockchain Access Platform technical details

Name of
Component/Service:

Italian Blockchain Access Platform

Type Component

Functionality Platform that certifies customer data for the flexibility

Input Connections &
Interfaces

Light Node

• PLC-C (Chain 2) to 2G Smart Meters

• Modbus TCP (LAN)

• Modbus RTU (RS485)

• REST API

Output Connections &
Interfaces

Shared Customer Database:

• REST – API

• KAFKA (Optional)

Software
Requirements/Development
Language

The Blockchain Access Layer Platform will be composed at least of

the following modules and Development languages:

• Web Dashboard – ReactJS

• Backend and services – NodeJS

• Data Layer – MongoDB

• Blockchain infrastructure – Ethereum / Quorum

• Smart Contracts Services - Solidity

Hardware Requirements Light Node will be composed at least of the following modules:

• Communication module to Chain 2, 2G counter (PLC-C)

• RS-485 serial module

• LTE / HSPA + / UMTS / GPRS / GSM multi-band cellular

communication module

• Wi-Fi and Bluetooth module

• Ethernet LAN module

Deliverable D2.1

Platone – GA No 864300 Page 42 (75)

• Power supply module

• ARM system-on-module (e.g. Cortex A5) with at least

512MB RAM, storage memory with a minimum capacity of

8GB preferably Flash memory and possibility of an

expansion via microSD

• RTC - Real Time Clock module

Status of the development
of the component

to be developed from scratch

WP and Task reference WP3 – Task 3.2

Table 14: EMS technical details

Name of
Component/Service:

Energy Management System

Type Component

Functionality The system is installed in customer premises and performs the follow

main functionalities:

- Monitoring of energy consumption and production

- Activation of set point coming from Light-Node

- Manage operation building systems, smart appliances and

devices

- Customer energy awareness

Input Connections &
Interfaces

The input connections and interfaces available depend from

Customer’s EMS. The Light Node is able to exchange data with

Energy Management System by:

• REST-API

• Modbus TCP

• Modbus RTU (RS485)

Output Connections &
Interfaces

The output connections and interfaces available depend from

Customer’s EMS. The Energy Management System shall be able to

exchange data with Light Node by:

• REST-API

• Modbus TCP

• Modbus RTU (RS485)

Software
Requirements/Development
Language

Customers Energy Management Systems should be integrated by

the following modules:

• Integration Microservices – NodeJS

Deliverable D2.1

Platone – GA No 864300 Page 43 (75)

For some customers, an Energy Management Systems should be

the one developed by Apio in the past. In this case, the EMS is

composed by:

• Web Dashboard – ReactJS

• Backend and services – NodeJS

• Data Layer – MongoDB

Hardware Requirements In addition to the ones for the connections and interface, hardware

requirements are the typical ones used by Energy Management

System.

The Energy Management System developed by Apio in past

experience is composed by:

• ARM system-on-module (e.g. Cortex A5) with at least

512MB RAM, storage memory with a minimum capacity of

8GB preferably Flash memory and possibility of an

expansion via microSD;

• Wi-Fi and Bluetooth module;

• Ethernet LAN module;

• Power supply module;

Status of the development
of the component

Already developed (limited to Apio EMS)

WP and Task reference WP3 – task 3.2.2 (limited to Apio EMS)

Table 15: Italian DSO Technical Platform technical details

Name of
Component/Service:

Italian DSO Technical Platform

Type Component

Functionality Platform used by DSO to manage the network, the main

functionalities are:

- Calculate the flexibility requests;

- Assessment of the flexibility offers;

- State estimation

Input Connections &
Interfaces

• Market Platform (REST APIs)

• SCD (REST APIs and/or Message Broker)

• Light Node (REST APIs and/or Message Broker)

Output Connections &
Interfaces

• Market Platform (REST APIs)

• SCD (REST APIs and/or Message Broker)

• Light Node (REST APIs and/or Message Broker)

Deliverable D2.1

Platone – GA No 864300 Page 44 (75)

Software
Requirements/Development
Language

C, Java, Javascript, Matlab, Gams and other Programming

Languages that will be defined

Hardware Requirements Hardware requirements still to be defined

Status of the development
of the component

Partially developed: the main tools are been implemented, but some

services and interfaces will be developed again

WP and Task reference WP3 – T3.3.1

Table 16: Italian SCD technical details

Name of
Component/Service:

Italian Shared Customer Database (SCD)

Type Component

Functionality SCD hosts the data for characterize the flexibility, its main

functionalities are:

- Storage of energy flexibility data;

- Share the data with all the stakeholders;

Input Connections &
Interfaces

• Italian Blockchain Access Platform (REST APIs)

• Aggregator Platform (REST APIs and/or Message Broker)

• Market Platform (REST APIs and/or Message Broker)
• Light Node

Output Connections &
Interfaces

• Italian DSO Technical Platform (REST APIs)

• Aggregator Platform (REST APIs and/or Message Broker)

• Market Platform (REST APIs and/or Message Broker)

• TSO SIMULATOR

Software
Requirements/Development
Language

The Shared Customer database will have different communication

layers, as Kafka, Apache Zookeeper and Fluentd, and also

MongoDB and Elasticsearch for data storage. The Programming

Languages will be Java and JavaScript.

Hardware Requirements The hardware requirements will be tailored to the needs of the

project on amazon cloud.

Status of the development
of the component

To be developed from scratch, currently we are writing the

functionality requests.

WP and Task reference WP3 – Task 3.2.3

Table 17: TSO Simulator technical details

Name of
Component/Service:

TSO Simulator

Deliverable D2.1

Platone – GA No 864300 Page 45 (75)

Type Component

Functionality The TSO Simulator simulates possible TSO’s network congestion

and then provide to Market the flexibility requests;

Input Connections &
Interfaces

TSO Simulator will work with historical data, other external input are

not necessaries

Output Connections &
Interfaces

TSO Simulator will provide flexibility requests to the Market Platform

using HTTPs requests and exploiting Market Platform REST APIs

Software
Requirements/Development
Language

The historical data will be stored in a No-SQL database (MongoDB)

and the services will be implemented in NodeJs and ExpressJS

Framework.

Hardware Requirements No particular hardware is required

Status of the development
of the component

From Scratch

WP and Task reference WP3

4.4.2 Hardware devices
This list reports the hardware devices that will be installed on the field of the different demos. At the
moment (M12) some device parameters are not identifiable and will be included with the second version
of the deliverable expected for M30 (February 2022).

Table 18: Customer-owned Flexibility specification

Name of Device Customer-owned Flexibility (Domestic batteries, electric heating)

Description Devices on customers’ premises which can respond to ALF-C control

signals. Batteries to charge / discharge on demand, heaters / heat

pumps to modulate momentary power demand / heat load.

Functionality Respond to power setpoints defined by ALF-C

Measurement Power, voltage, current, reactive power, temperature, SOE, SOC

Measurement Range

TBD

Measurement Resolution TBD

Accuracy TBD

Data Connections Ethernet / Wi-Fi, REST API

Data Output Format TBD

Data Rate TBD

Data Availability TBD

Deliverable D2.1

Platone – GA No 864300 Page 46 (75)

Table 19: Large Batter Energy System specification

Name of Device Large Battery Energy System

Description Stationary grid scale battery to provide the required flexibility to

enable use cases in pilot network.

Functionality Charges and discharges in response to ALF-C setpoints, provides

all relevant data to ALF-C

Measurement Power, voltage, current, reactive power, temperature, SOE, SOC

Measurement Range

TBD

Measurement Resolution TBD

Accuracy TBD

Data Connections Cellular, REST API

Data Output Format MODBUS TCP

Data Rate TBD

Data Availability TBD

Table 20: PMU specification

Name of Device Phasor Measurement Unit (PMU)

Description PMU collects data on field level

Functionality Required to provide data for use case execution

Measurement Power, voltage, current, cos(phi)

Measurement Range

TBD

Measurement Resolution TBD

Accuracy TBD

Data Connections Ethernet, Wi-Fi or cellular

Data Output Format IEC 61850, MQTT, UDP-IP

Data Rate TBD

Data Availability TBD

Deliverable D2.1

Platone – GA No 864300 Page 47 (75)

Table 21: Light Node specification

Name of Device Light Node

Description Device that reads, arranges, certifies in Blockchain and sends the
measurement and data provided by Smart Meter to the SCD (shared
customer database). Moreover, the device receives set point from
Italian DSO Technical Platform and make it available to Customer
apparatus (e.g. EMS).

Functionality • Gather the high granularity measurements (every 4 sec.)

provided by Smart Meter;

• Certifies on Blockchain the data;

• Make available set-point to customer’s apparatus (e.g. EMS)

Measurement The measurements read by the Light Node are:

• Energy Active and Reactive productions and consumptions

(15 minutes, Daily and Monthly);

• Power Active and Reactive productions and consumptions

(4 seconds, 15 minutes, daily and monthly);

• EMS Responses;

• BMS Responses;

Measurement Range

The Light Node just read the measure make available by connected

Smart Meter (or other meters or apparatus connected to Light Node).

Measurement Resolution N.A.

The Light Node just reads the measurement made available by

connected Smart Meter (or other meters or apparatus connected to

Light Node).

Accuracy N.A.

The Light Node reads the measurement made available by

connected Smart Meter (or other meters or apparatus connected to

Light Node).

Data Connections • Communication module to Chain 2, 2G counter (PLC-C);

• RS-485 serial module;

• LTE / HSPA + / UMTS / GPRS / GSM multi-band cellular

communication module;

• Wi-Fi and Bluetooth module;

• Ethernet LAN module;

Data Output Format The Light Node will send Data Output in JSON standard form.

Data Rate The Light Node collects data at least 4 seconds time interval

Deliverable D2.1

Platone – GA No 864300 Page 48 (75)

Data Availability Light Node continuously sends the Data Stream to the Shared

Customer Database. It is also possible to ask additional data directly

to the Light Node (if necessary)

Table 22: EV Charging station specifications

Name of Device Flexible Resources

[EV charging station]

Description Public charging points equipped with a socket of 3,7 kW and another

of 22 kW

Functionality Smart charging of the EV

Measurement Too early to define it

Measurement Range
 Too early to define it

Measurement Resolution Too early to define it

Accuracy Too early to define it

Data Connections Too early to define it

Data Output Format Too early to define it

Data Rate Too early to define it

Data Availability Too early to define it

Table 23: Storage System specification

Name of Device Flexible Resources

[Storage System]

Description Storage System consisting in Lithium battery and related

Management System installed in premises of the Low Voltage

customer

Functionality Increase the flexibility of the LV customers. The related Management

System is able to manage the battery operation

Deliverable D2.1

Platone – GA No 864300 Page 49 (75)

(charging/discharging) in order to provide flexibility services

accordingly to grid requests.

Measurement Too early to define it

Measurement Range Too early to define it

Measurement Resolution Too early to define it

Accuracy Too early to define it

Data Connections Too early to define it

Data Output Format Too early to define it

Data Rate Too early to define it

Data Availability Too early to define it

Table 24: LV Circuit breaker with IED specifications

Name of Device Sensors

[LV Circuit breaker with IED]

Description LV Switches embed with Intelligent Electronic Devices (IED) that

gather the measurements (V, I, cos φ,…) for every LV line

Functionality Observability of LV network

Measurement V on bus-bar, and I, P, Q, and cos φ, for every line

Capacity

Rated insulation voltage

Rated current

Rated short-circuit breaking cap.

Closing power in short circuit

690 V

400 A

20kA 400V cosᶲ=0,25

42kA(cr) 400V cos φ=0,251

Measurement Resolution N.A.

Accuracy N.A.

Data Connections Modbus RTU

Data Output Format Modbus RTU frame

1 (cr) is Italian “cresta”, meaning peak.

Deliverable D2.1

Platone – GA No 864300 Page 50 (75)

Data Rate Up to 19200 bps

Data Availability on demand

Table 25: Voltage and current sensor specification

Name of Device Sensors

[Voltage and current sensors]

Description Device installed in Primary Substation to measure the electrical

quantities and send them to SCADA.

Functionality Observability of the MV network

Measurement V for every bus-bar, and I for every MV feeders

Measurement Range

Rated primary current of application: up to 3 200 A

Rated primary voltage of application: up to 40.5 kV

Measurement Resolution N/A

Accuracy Current accuracy class: up to 0.5/5P630

Voltage accuracy class: up to 0.5/3P

Data Connections Cable connector type: Twin BNC

Data Output Format Analog output

Data Rate Not applicable

Data Availability Continuous

Deliverable D2.1

Platone – GA No 864300 Page 51 (75)

5 Process View
The process view analysis of the system defines how the system actually works in the runtime
environment and how it performs in response to external (or internal) signals. The interactions between
the system’s actors and system’s components are usually data flows representing the information
exchanged in parallel or sequential execution of internal tasks

In addition, this view also highlights the communication protocols and the interoperability mechanisms
that allow the connection among the different components (internal or external) included in the Platone
Framework.

5.1 Interoperability Mechanisms and communication protocols
Interoperability within the Platone Framework will be assured by specifying all the interfaces between
the different components of the framework and between the individual services that are operating on
incoming data.

Asynchronous streaming data from field devices or legacy systems will enter into the blockchain access
layer in a vender specific format and will be fed into the data bus of the DSOTP. The data bus will be
based on MQTT or Apache Kafka using JSON formatted messages. The messages can contain data
based on existing standards in the respective field (wherever feasible), or can contain custom messages
in order to fulfil the needs of the different Platone use cases. However, our work package aims at
identifying synergies between use case specific data formats in order to harmonize and specify them
accordingly.

Synchronous communication interfaces between components of the Platone Framework or with
services running on the DSOTP or on the Market Platform should be implemented with REST APIs that
will be specified in accordance with the OpenAPI Specification (OAS) [37]

5.2 Processes and diagrams
From a processes perspective, Platone is aimed to produce a collaborative system of independent
components sharing domain specific ontology, data and functional aspects that can be clustered into
three main processes:

1) Market interactions
2) Grid operative control/Flexibility Services Activation
3) Measurement Acquisition and Certification

The Market interactions process, as shown in Figure 14 is implemented only in the Italian Demo (WP3)
and consists of the following steps:

1- Platone Market Platform collects flexibility offers (from Aggregator Platform) and flexibility
requests (from DSOs and TSOs)

2- Platone Market Platform matching flexibility request and offers
3- Platone Market Platform provides market outcomes (the results of the market clearing) to

Italian DSOTP for technical feasibility evaluation
4- Italian DSOTP validate market outcomes and provide results to Platone Market Platform
5- Platone Market Platform provides validated market outcomes to all the Market Players (DSOs,

TSOs and Aggregators)
6- Platone Market Platform receive setpoints to be activated (see process 2)
7- Italian Blockchain Access Platform collects measurements (see process 3)
8- Italian SCD provide measurements for validation and settlement to Aggregator Platform and

Platone Market Platform
9- Platone Market Platform performs settlement and provide economic output to Aggregators,

DSOs and TSOs

Deliverable D2.1

Platone – GA No 864300 Page 52 (75)

Figure 14: Process View - Market Interactions

The Grid Control and Flexibility Services activation process is implemented in German Demo (Figure
15) and Italian Demo (Figure 16). The process consists of the following steps.

German Demo:
1- Platone DSOTP collects setpoints from external systems (EMS)
2- Platone DSOTP:

a. provides data to Platone Market Platform and Platone BAP via data bus
b. uses data for specific DSO services (e.g. data visualization)

3- Platone BAP in in charge of:
a. Certifying data on blockchain infrastructure
b. Registering data on Platone Shared Customer Database (SCD)
c. Providing setpoints to physical infrastructure.

Italian Demo:
1- Platone Market Platform collects setpoints from DSOs and TSOs;
2- Platone Market Platform provide setpoints to Italian DSOTP, Italian SCD and Aggregator

Platform;
3- Italian DSOTP:

a. Provides data to Italian BAP,
b. uses data for specific DSO services;

4- Italian BAP in in charge of:
a. Certify data on blockchain infrastructure,
b. Provide setpoints to Light Nodes.

Deliverable D2.1

Platone – GA No 864300 Page 53 (75)

Figure 15: Process View - Grid Control German Demo

Figure 16: Process View – Flexibility Services Activation Italian Demo

The Measurements acquisition and certification process is implemented in all the three demos with some
small differences in the implementation of the Italian demo. As shown in Figure 17, this process consists
of the following steps:

1- Platone BAP collects measurement from Physical infrastructure;
2- Platone BAP in in charge of:

a. Certify data on blockchain infrastructure;
b. Register data on Platone SCD;
c. Provide data to Platone DSOTP data bus.

3- Platone DSOTP:

Deliverable D2.1

Platone – GA No 864300 Page 54 (75)

a. provides data to other systems (included Market Platform and external systems) via
data bus;

b. uses data for specific DSO services (e.g. data visualization).

Figure 17: Process View - Measurements Acquisition and Certification

Deliverable D2.1

Platone – GA No 864300 Page 55 (75)

6 Development View
Within this section, we will provide information about the development of the Platone components,
including the implementation approach and the programming languages/technologies that may be used
by each component.

Each main component of the system should offer to the others a way to communicate with each other.
Contents and mode of this communication is the first step to achieve, in order to design well defined
boundaries between system components that will allow development groups to choose the best
technology and architecture design for their own components.

This complex architecture has a natural inhomogeneity of software, technologies and languages used,
as each development group choices are driven by different habits and competence. The complexity of
each component can also be very different, bringing developers to adopt different choice and
architectures, also considering re-use of already existent software.

The table and the figure below report the list of technologies and tools used within the different Platone
Platforms.

Table 26: Platone Platforms technologies

Platform Application Data Storage Presentation Communication

Platone
Market
Platform

Javascript

NodeJs

ExpressJs

Ethereum

Solidity

Docker

MongoDB

Javascript

HTML5

CSS/SCSS

Vue.js

REST APIs

Apache Kafka

Platone
DSO
Technical
Platform

Java / J2EE

Node.js/JavaScript

Docker

Kubernetes

Matlab

Python

Go

Redis

ELK (Elasticsearch)

PostgreSQL

Oracle

Timescale

Influx

JavaScript

CSS/SCSS

React

Angular

Grafana/Prometheus

RabbitMQ

Apache Kafka

REST APIs

Platone
Blockchain
Access
Platform

Javascript

NodeJs

ExpressJs

Ethereum

Solidity

Docker

MongoDB

Javascript

HTML5

CSS/SCSS

REST APIs

Rabbit MQ

Platone
Shared
Customer
Database

Javascript

NodeJs

ExpressJs

Cassandra/MongoDB

Rabbit MQ

REST APIs

Deliverable D2.1

Platone – GA No 864300 Page 56 (75)

Docker

Implementation Approach:

The implementation approach for the Platone Open Framework will be based on Iterative and
incremental development. [38]

Figure 18: Iterative and incremental development approach

In particular, it foresees an iterative incremental approach based on three main phases. In each phase
will be delivered a prototype of Platone Open Framework and Platone Platforms.

Phase 1 (M1-M20), It will include definition use cases, scenarios, user and technical requirements, the
definition of reference architecture. The first version of Platone Platforms will be released at M18
(February 2021) and the first version of the integrated Platone Open Framework will be released at
M20 (April 2021). This version of the Platforms will include a subset of the overall functionalities
expected.

Phase 2 (M21-M40), it is based on the feedback from Phase 1. The KPIs, scenarios and both user and
technical requirements will be refined (M30, February 2022) and a second version of the platforms will
be released (M38, October 2022) and integrated (M40, December 2022) in an intermediate version of
the Platone Open Framework, functionally complete.

Phase 3 (M41-M48), it based on the evaluation results of Phase 2. Usability, user behavior evaluation
and impact creation will be analysed and assessed. Furthermore, this phase will take in account the
preliminary simulation results, using them as feedback for the final Platone Open Framework release
(M48, August 2023, end of the project).

Open Source:

As already mentioned, the Platone Open Framework will be released as Open Source. The project
roadmap described in the implementation approach will be also followed for the project releases and
shared with external communities.

The Platone open source approach foresees:

• Open Source licensing for all the Platone Platforms and Platone Open Framework (e.g. Apache
2.0);

• Usage of a public visible repository for source code (e.g. GitHub);
• Planned releases of the software (following project roadmap);
• Creation of specific documentation (README, FAQ, Change Log, Release Notes, etc...).

Deliverable D2.1

Platone – GA No 864300 Page 57 (75)

7 Deployment View
The Physical View presents aspects of the system that are connected with the realization of the
system’s components in the physical world.

Platone will provide different approaches for the deployment: on cloud or installation on premises.

The Platone Market Platform and the Blockchain Access Layer (including the Platone Blockchain Access
Platform and the Platone Shared Customer Database) will be will be available both in the cloud and for
the installation on premises whereas the Platone DSO Technical platform will be released only for
installation on premises.

7.1 Cloud Hosting and Software-as-a-service model
The Platone Market Platform, the Platone Blockchain Access Platform and the Platone Shared
Customer Database will be deployed and hosted by ENG in its own server farm located in Pont-Saint-
Martin (Italy).

In particular, ENG already provides a blockchain infrastructure that consists of a series of Ethereum
nodes in which blockchain-based application can run and an API gateway that allows managing all API
calls from clients, then routes them to the appropriate component or service.

The Platone components will exploit this blockchain infrastructure and API gateway offering their
functionalities in a Software-as-a-Service (SaaS) model.

Figure 19: ENG cloud infrastructure

7.2 Installation on premises and containerization
All the Platone Platforms will also be packaged and released for the deployment on demo premises. To
facilitate the release of the components, Platone foresees use of the Docker Containerization approach.

Containerization:

This term refers to the use of containers. A container is a virtualized server at the operating system level,
for which the virtual instance only concerns the user space, i.e. the application execution environment.

Deliverable D2.1

Platone – GA No 864300 Page 58 (75)

Containers are not installed like traditional software programs, which allows them to be isolated from
the other software and the operating system itself. [39]

The isolated nature of containers provides several benefits. First, the software in a container will run the
same in different environments. Second, containers provide added security since the software will not
affect the host operating system.

Containers also eliminate installation issues, including system conflicts, version incompatibilities, and
missing dependencies. The result is a "works on all machines" solution, which is ideal for both
developers and end users. It also makes the jobs of network administrators easier, since they can deliver
containers to a multiple users without having to worry about compatibility issues.

Therefore, we do not virtualize the processor, storage, network connections, etc. of the physical server,
which remain shared between the running containers. This approach means that containers are "lighter"
than virtual machines, require fewer resources and can be activated very rapidly and therefore can
respond to situations with sudden loads and peaks.

Figure 20: Docker Containers vs Virtual Machines [40]

Docker

Docker is a world-leading CaaS (Container-as-a-Service platform). It is fully open source, under license
Apache 2.0 and is the most dominant tool in the container ecosystem at the moment, used in production
stage by companies like eBay, Uber and PayPal. The container is a way to package software along with
required binaries and settings, isolated on a shared operating system.

Docker makes it easier to create and manage application deployment and release. Once your services
have been dockerised in containers, you can deploy those containers to any server with Docker installed
and combine them to compose complex applications. You can move them around between hosts for
portability.

The key steps involved are the following:

1. Package each Platone Platform as one or more (Docker) container images;
2. Deploy each platform as a container;
3. Run the containerized platform in the demos’ infrastructures.

Deliverable D2.1

Platone – GA No 864300 Page 59 (75)

7.3 Deployment Diagrams
The Figure 21 represents the deployment view of the cloud infrastructure. The cloud infrastructure is
usable as-a-Service thanks to the API Gateway component that allows the integration of external
components and end-user applications. Furthermore, the Integration Layer allows the integration of data
coming from the fields in two ways: via MQTT protocol for IoT infrastructure or via TCP/IP protocol for
Data server implementation.

Figure 21: Deployment View - Cloud Infrastructure

Deliverable D2.1

Platone – GA No 864300 Page 60 (75)

8 Requirements on the Platone Platforms
This chapter includes in Table 27 all the functional and non-functional requirements expected for the
Platone platforms developed within WP2. The information regarding the other components and services
expected in WP3 WP4 and WP5 will be described in the respective deliverable by the responsible WPs.

As already mentioned in the Methodology paragraph, Use Cases, Scenarios and Information flows have
been used as the input for defining the list of functional and non-functional requirements for Platone
Platforms. All these input information could be found more in detail in D1.1 [2], D4.1 [3] and D5.2 [4].

This list of requirements represents the baseline for the implementation of the three version of the
Platone Platforms that will be respectively released in M18 (February 2021), M38 (October 2023) and
M46 (June 2024).

The integrated prototype of the Platone Open Framework will include all the Platone Platforms and will
be evaluated during the three different demos in Italy, Greece and Germany.

As already mentioned, an update of all these requirements, especially non-functional one, which at the
moment are not yet all well defined, due to the lack of some information, is expected in M30 (February
2022), after the first validation of the prototype on the field.

Table 27: Platone Platforms Requirements

Requirement ID Requirement name Requirement description Use Cases

Market Platform – Functional Requirements

FR-MP-FSM-01 Flexibility Services
Management

The Market Platform allows DSOs
and TSOs to create flexibility
requests in automatic way

UC-IT-1
UC-IT-2

FR-MP-FSM-02 Flexibility Services
Management

The Market Platform allows DSOs to
create flexibility requests through UI

UC-IT-1
UC-IT-2

FR-MP-FSM-03 Flexibility Services
Management

The Market Platform allows
Aggregator Platform to create
flexibility offers in automatic way

UC-IT-1
UC-IT-2

FR-MP-FSM-04 Flexibility Services
Management

The Market Platform acquires and
stores all the flexibility requests and
offers

UC-IT-1
UC-IT-2

FR-MP-MOMV-01
Market Outcomes
Matching and
Validation

The Market Platform is able to match
flexibility requests and offers through
clearing market algorithms

UC-IT-1
UC-IT-2

FR-MP-MOMV-02
Market Outcomes
Matching and
Validation

The Market Platform is able to
provide the Market Outcomes
(results of market clearing) to the
DSO Technical Platform for the
technical validation

UC-IT-1
UC-IT-2

FR-MP-MOMV-03
Market Outcomes
Matching and
Validation

The Market Platform receives the
validated market outcomes from
DSO Technical Platform

UC-IT-1
UC-IT-2

Deliverable D2.1

Platone – GA No 864300 Page 61 (75)

FR-MP-MOMV-04
Market Outcomes
Matching and
Validation

DSOs, TSOs and Aggregators
receives Market Day Ahead
outcomes from the Market Platform

UC-IT-1
UC-IT-2

FR-MP-SA-01 Services activation
The Market Platform allows to DSOs
and TSOs to create service
activation requests in automatic way

UC-IT-1
UC-IT-2

FR-MP-SA-02 Services activation
The Market Platform allows to Market
participant to create service
activation requests through UI

UC-IT-1
UC-IT-2

FR-MP-SA-03 Services activation

The Market Platform is able to
aggregate the service activation
requests (from DSOs and TSOs) and
provide them to all the other
stakeholders

UC-IT-1
UC-IT-2

FR-MP-BC-01 Blockchain
certification

The Market Platform is able to
register on the blockchain all the
market data trough Smart Contracts
based functionalities

UC-IT-1
UC-IT-2

FR-MP-BC-02 Blockchain
certification

The Market Platform allows to Market
participant to verify all the market
data registered in the blockchain

UC-IT-1
UC-IT-2

FR-MP-S-01 Settlement The Market Platform is able to read
meters measurements from SCD

UC-IT-1
UC-IT-2

FR-MP-S-02 Settlement
The Market Platform performs the
settlement comparing the metering
data and BRP baseline

UC-IT-1
UC-IT-2

FR-MP-S-03 Settlement

The Blockchain Service Layer is able
to provide tokenization system for the
settlement through Smart Contracts
functionalities

UC-IT-1
UC-IT-2

FR-MP-S-04 Settlement
The Market Platform allows to DSO,
TSO and Aggregator to read the
settlement outcomes

UC-IT-1
UC-IT-2

Market Platform – Non-Functional Requirements

P-MP-01 Communication
protocols

The Market Platform exposes REST
APIs for collecting flexibility requests
and flexibility offers

UC-IT-1
UC-IT-2

P-MP-02 Communication
protocols

The Market Platform provides a
message broker for communicating
market results

UC-IT-1
UC-IT-2

DSOTP - Functional Requirements

Deliverable D2.1

Platone – GA No 864300 Page 62 (75)

FR-DSOTP-DA-01 Data Acquisition
The DSOTP is able to receive
Measurements that reflect the
network state from DSO Data Server

UC-GR-1
UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5

FR-DSOTP-DA-02 Data Acquisition The DSOTP is able to receive data
coming from State Estimation Tool

UC-GR-1
UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5

FR-DSOTP-DA-03 Data Acquisition
The DSOTP is able to receive PMU
measurements that reflect the
network state

UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5

FR-DSO-TP-DA-04 Data Acquisition The DSOTP is able to receive
certified measurement from BAP

UC-GR-1
UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5
UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

FR-DSO-TP-DA-05 Data Acquisition The DSOTP is able to receive
setpoints from EMS

UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

FR-DSOTP-SE-01 State Estimation The DSOTP is able to trigger the
State Estimation Tool via REST API.

UC-GR-1
UC-GR-2
UC-GR-3
UC-GR-4

FR-DSOTP-SE-02 State Estimation
The DSOTP provides the results of
State Estimation as estimated state
vector to DSO

UC-GR-1
UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5

FR-DSOTP-PMU-01 PMU Data
Integration

The DSOTP is able to integrate PMU
and conventional measurements into
a unified measurement set for
performing observability assessment
via the State Estimation Tool.

UC-GR-2
UC-GR-3
UC-GR-4

FR-DSOTP-T-01 Tariffs retrieval
The DSOTP sends to the
DSO/Aggregators tariffs that reflect
the expected state of the network

UC-GR-3
UC-GR-4

FR-DSOTP-T-02 Tariffs retrieval

The DSOTP is able to receive data
coming from the Algorithm for DER

UC-GR-3
UC-GR-4

Deliverable D2.1

Platone – GA No 864300 Page 63 (75)

Control and Algorithm for ancillary
services

FR-DSOTP-DER-01 Optimal DER
dispatching

DSOTP is able to trigger the
Algorithm for DER Control via REST
API

UC-GR-3

DSOTP – Non-Functional Requirements

P-DSOTP-01 Communication
protocols

DSOTP is able to receive data from
PMUs via MQTT protocol

UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5

P-DSOTP-02 Communication
protocols

DSOTP is able to receive data from
DSO Data Server via TCP/IP
protocol

UC-GR-1
UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5

P-DSOTP-03 Communication
protocols

DSOTP is able to receive setpoints
from A-LFC via TCP/IP protocol

UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

T-DSOTP-01 Timing
DSOTP is able to receive
measurement every 10 seconds from
sensors

UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

T-DSOTP-02 Timing
DSOTP is able to receive
measurement every 15 minutes from
Data Management Backend

UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

T-DSOTP-03 Timing

DSOTP is able to receive setpoints
every 10 seconds for BESS and
every 15 minutes for flexible loads
and storages

UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

BAP – Functional Requirements

FR-BAP-DM-01 Blockchain Data
Management

The BAP is able to acquire
Measurements from network

UC-GR-1
UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5
UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

FR-BAP-DM-02 Blockchain Data
Management

The BAP certifies Measurements via
Smart Contracts

UC-GR-1
UC-GR-2

Deliverable D2.1

Platone – GA No 864300 Page 64 (75)

UC-GR-3
UC-GR-4
UC-GR-5
UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

FR-BAP-DM-03 Blockchain Data
Management

The BAP provides certified
measurement in a secure way to
DSOTP

UC-GR-1
UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5
UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

FR-BAP-NC-01 Network Control The BAP is able to receive set points
from DSOTP

UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

FR-BAP-NC-02 Network Control The BAP certifies set points via
Smart Contracts

UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

FR-BAP-NC-03 Network Control The BAP is able to send certified set
points to Data Management Backend

UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

BAP – Non-Functional Requirements

P-BAP-01 Communication
protocols

The BAP is able to receive data from
sensors via MQTT protocol

UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5
UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

P-BAP-02 Communication
protocols

The BAP is able to integrate data
coming from external server via
TCP/IP protocol

UC-GR-1
UC-GR-2
UC-GR-3
UC-GR-4
UC-GR-5
UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

T-BAP-01 Timing BAP is able to receive measurement
every 10 seconds from sensors

UC-GE-1
UC-GE-2

Deliverable D2.1

Platone – GA No 864300 Page 65 (75)

UC-GE-3
UC-GE-4

T-BAP-02 Timing
BAP is able to receive measurement
every 15 minutes from Data
Management Backend

UC-GE-1
UC-GE-2
UC-GE-3
UC-GE-4

Deliverable D2.1

Platone – GA No 864300 Page 66 (75)

9 Conclusion
The work done at this stage, allowed us to have a complete overview of the characteristics of the Platone
Open Framework and how it can be exploited by integrating it into existing architectures or used in its
entirety.

The use of standard methodologies, such as the 4+1 architectural views and IEC 62559, has allowed
us to define the characteristics of the Platone Reference architecture and the functional and non-
functional requirements for all Platone Platforms in a standardized way.

The results of this work will be the base for the implementation of the Platone Platforms and the
integration of the Platone Open Framework within the demo sites architecture. Each demo site will
integrate different parts of the framework, test and evaluate them. The iterative implementation approach
will allow us to learn from each iteration, enriching and improving the framework throughout the project.

Furthermore, the open source approach will ensure a better outreach and re-use of the results as well
as an increment of the impact of the Platone project on the scientific community and in particular on the
energy stakeholders.

Deliverable D2.1

Platone – GA No 864300 Page 67 (75)

10 List of Tables
Table 1: Platone Terminology ... 12
Table 2: List of Platone Architectural Components ... 20
Table 3: ALF-C technical details ... 34
Table 4: Sensor & Controller Data Management Backend technical details .. 35
Table 5: BESS Data Management Backend technical details .. 35
Table 6: DSO Data Server technical details .. 36
Table 7: Algorithm for ancillary services technical details ... 36
Table 8: Algorithm for DER control technical details ... 37
Table 9: State Estimation Tool technical details.. 38
Table 10: Operation Systems technical details ... 38
Table 11: Aggregator Platform technical details ... 39
Table 12: App Aggregator-Customer technical details .. 40
Table 13: Italian Blockchain Access Platform technical details ... 41
Table 14: EMS technical details .. 42
Table 15: Italian DSO Technical Platform technical details .. 43
Table 16: Italian SCD technical details .. 44
Table 17: TSO Simulator technical details .. 44
Table 18: Customer-owned Flexibility specification .. 45
Table 19: Large Batter Energy System specification .. 46
Table 20: PMU specification .. 46
Table 21: Light Node specification .. 47
Table 22: EV Charging station specifications .. 48
Table 23: Storage System specification .. 48
Table 24: LV Circuit breaker with IED specifications .. 49
Table 25: Voltage and current sensor specification .. 50
Table 26: Platone Platforms technologies ... 55
Table 27: Platone Platforms Requirements ... 60
Table 28: Platone Architectural Components Detailed Specifications Template 74
Table 29: Platone Hardware Components Detailed Specifications Template 74

Deliverable D2.1

Platone – GA No 864300 Page 68 (75)

11 List of Figures
Figure 1: Platone architecture design methodology .. 8
Figure 2: Initial Platone Framework Architecture .. 9
Figure 3: 4 + 1 View Model .. 10
Figure 4: UML diagrams allocated to the views on the 4+1 View Model [8] ... 11
Figure 5: Platone Open Framework .. 16
Figure 6: SOFIE Interledger component ... 19
Figure 7: Italian Demo Architecture ... 21
Figure 8: Greek Demo Architecture ... 23
Figure 9: German Demo architecture .. 24
Figure 12: Logical View and functional components ... 27
Figure 11: Platone Market Platform Architecture .. 28
Figure 12: Platone DSO Technical Platform architecture ... 30
Figure 13: Platone Blockchain Access Layer architecture .. 32
Figure 14: Process View - Market Interactions .. 52
Figure 15: Process View - Grid Control German Demo .. 53
Figure 16: Process View – Flexibility Services Activation Italian Demo .. 53
Figure 17: Process View - Measurements Acquisition and Certification ... 54
Figure 18: Iterative and incremental development approach .. 56
Figure 19: ENG cloud infrastructure .. 57
Figure 20: Docker Containers vs Virtual Machines [39] .. 58
Figure 21: Deployment View - Cloud Infrastructure .. 59

Deliverable D2.1

Platone – GA No 864300 Page 69 (75)

12 List of References

[1] European Commission, “2050 long-term strategy,” 2018. [Online]. Available:
https://ec.europa.eu/clima/policies/strategies/2050_en.

[2] Platone, D1.1 General Functional Requirements and specifications of joint activities in the
Demonstrators, 2020.

[3] Platone, D4.1 Report on the definitions of KPIs and UCs, 2020.

[4] Platone, D5.2 Detailed Use Case Descriptions, 2020.

[5] Platone, Description of Work (DoW), 2019.

[6] P. Kruchten, “The “4+1” View Model of Software Architecture,” in Architectural Blueprints, IEEE
Software 12, 1995, November, pp. 42-50.

[7] “ArchiMate - Wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/ArchiMate.

[8] “Archimate Tool,” [Online]. Available: https://www.archimatetool.com/.

[9] V. Muchandi, “Applying 4+1 View Architecture with UML2,” [Online]. Available:
www.sparxsystems.com/downloads/whitepapers/FCGSS_US_WP_Applying_4+1_w_UML2.pdf.

[10] J. S., “Blockchain: What are nodes and masternodes?,” 2018. [Online]. Available:
https://medium.com/coinmonks/blockchain-what-is-a-node-or-masternode-and-what-does-it-do-
4d9a4200938f.

[11] A. Rosic, “Smart Contracts: The Blockchain Technology That Will Replace Lawyers,” [Online].
Available: https://blockgeeks.com/guides/smart-contracts/.

[12] A. Rosic, “Blockchain Consensus: A Simple Explanation Anyone Can Understand,” [Online].
Available: https://blockgeeks.com/guides/blockchain-consensus/.

[13] “Bitcoin - Wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/Bitcoin.

[14] “Byzantine Fault - Wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/Byzantine_fault.

[15] “Proof-of-Work - Wikipedia,” [Online]. Available:
https://en.wikipedia.org/wiki/Proof_of_work#Bitcoin-type_proof-of-work.

[16] “Different Blockchain Consensus Mechanisms,” 10 November 2018. [Online]. Available:
https://hackernoon.com/different-blockchain-consensus-mechanisms-d19ea6c3bcd6.

[17] “Ethereum Whitepaper,” July 2019. [Online]. Available: https://ethereum.org/en/whitepaper/.

[18] “Blockchain in Energy and Sustainability,” [Online]. Available: https://consensys.net/blockchain-
use-cases/energy-and-sustainability/.

Deliverable D2.1

Platone – GA No 864300 Page 70 (75)

[19] “Blockchain for Energy 2018: Companies & Applications for Distributed Ledger Technologies on
the Grid,” 5 March 2018. [Online]. Available: https://www.woodmac.com/reports/power-markets-
blockchain-for-energy-2018-companies-and-applications-for-distributed-ledger-technologies-on-
the-grid-58115325.

[20] Bosco, Croce and Raveduto, “Blockchain technology for financial services facilitation in RES
investments,” Palermo, 2019.

[21] M. Pustišek, A. Kos and U. Sedlar, “Blockchain-based Autonomous Selection of Electric Vehicle
Charging,” 2016 International Conference on Identification, Information and Knowledge in the
Internet of Things, pp. 217-222, 2016.

[22] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. McCallum and A. Peacock,
“Blockchain technology in the energy sector: A systematic review of challenges and
opportunities,” Renewable and Sustainable Energy Reviews, vol. 100, pp. 143-174, February
2019.

[23] “H2020 eDREAM Project,” [Online]. Available: https://edream-h2020.eu/.

[24] “ERC 20 specification - Github,” [Online]. Available:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md.

[25] “Fungibility - Wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/Fungibility.

[26] “ERC 721 specifications - Github,” [Online]. Available:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md.

[27] “Interledger Protocol V4,” [Online]. Available: https://interledger.org/rfcs/0027-interledger-
protocol-4/draft-6.html.

[28] “SOFIE Interledger component specifications - Github,” [Online]. Available:
https://github.com/SOFIE-project/Interledger.

[29] “H2020 SOFIE Project,” [Online]. Available: https://www.sofie-iot.eu/.

[30] “H2020 SOGNO Project,” [Online]. Available: https://www.sogno-energy.eu/.

[31] “SOGNO D4.1 - Definition of overall SOGNO System Architecture,” 31 October 2018. [Online].
Available: https://www.sogno-
energy.eu/global/images/cms/Deliverables/774613_deliverable_D4.1.pdf.

[32] “Grafana,” [Online]. Available: https://grafana.com/.

[33] “Kubernetes (K8s),” [Online]. Available: https://kubernetes.io/.

[34] “Apache Cassandra,” [Online]. Available: https://cassandra.apache.org/.

[35] “BigChainDB,” [Online]. Available: https://www.bigchaindb.com/.

Deliverable D2.1

Platone – GA No 864300 Page 71 (75)

[36] C. Pop, M. Antal, T. Cioara, I. Anghel, D. Sera, I. Salomie, G. Raveduto, D. Ziu, V. Croce and M.
Bertoncini, “Blockchain-Based Scalable and Tamper-Evident Solution for Registering Energy
Data,” Sensors, vol. 19, no. 14, 2019.

[37] “Open API specification v3.0.3,” 20 February 2020. [Online]. Available:
https://swagger.io/specification/.

[38] “Iterative and Incremental Development - Wikipedia,” [Online]. Available:
https://en.wikipedia.org/wiki/Iterative_and_incremental_development.

[39] “Container definition,” [Online]. Available: https://techterms.com/definition/container.

[40] “Container Vs Process,” [Online]. Available:
https://sites.google.com/site/mytechnicalcollection/cloud-computing/docker/container-vs-process.

Deliverable D2.1

Platone – GA No 864300 Page 72 (75)

13 List of Abbreviations

Abbreviation Term

ALF-C Avacon Local Flex-Controller

ΑΜR Automatic Meter Reading system

API Application programming interface

BAL Blockchain Access Layer

BAP Blockchain Access Platform

BESS Battery Energy Storage System

BMS Battery Management System

BPMN Business Process Model and Notation

CaaS Container-as-a-Service

CIM Common Information Model

CPU Central Processing Unit

DEMI Distributed Energy Management Initiative

DER Demand Energy Response

DLT Distributed Ledger Technology

DMS Distribution Management System

DoW Description of Work

DSO Distribution System Operator

DSOTP DSO Technical Platform

EMS Energy Management System

ENG Engineering Ingegneria Informatica S.p.a.

EV Electric Vehicle

FAQ Frequently Asked Questions

FR Flexible Resource

GIS Geographic information system

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HSPA High Speed Packet Access

HTTP Hypertext Transfer Protocol

HTTPs Hypertext Transfer Protocol over SSL

IEC International Electrotechnical Commission

IED Intelligent Electronic Device

ILP Interledger Protocol

IoT Internet of Things

IT Information Technology

JSON JavaScript Object Notation

Deliverable D2.1

Platone – GA No 864300 Page 73 (75)

KPI Key Performance Indicator

LAN Local Area Network

LTE Long Term Evolution

LV Low Voltage

MQTT Message Queue Telemetry Transport

MV Medium Voltage

NSGA Non-Dominated Sorting Genetic Algorithm

OAS Open API Specification

OS Operating System

OT Operational Technology

P2P Peer to Peer

PLC Programmable Logic Controller

PMU Phasor Measurement Unit

PoD Point of Delivery

PoW Proof-of-Work

RAM Random Access Memory

RES Renewable Energy Sources

REST Representational State Transfer

RTU Remote Terminal Unit

SaaS Software-as-a-Service

SCADA Supervisory Control And Data Acquisition

SCD Shared Customer Database

SE State Estimation

SGAM Smart Grid Architecture Model

SoC State of Charge

SoE State of Energy

SQL Structured Query Language

SSD Solid State Disk

TBD To be decided

TCP/IP Transmission Control Protocol / Internet Protocol

TSO Transmission System Operator

UC Use Case

UI User Interface

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

WP Work Package

Deliverable D2.1

Platone – GA No 864300 Page 74 (75)

Annex A Platone Components Detailed Specifications Templates

A.1 Platone Architectural Components Detailed Specifications Template
Table 28: Platone Architectural Components Detailed Specifications Template

Name of
Component/Service:

<please write here the name of the architectural element e.g. Market

Platform (Component) or State Estimation Tool (Service)>

Type <Component or Service>

Functionality <please write here in free text a short description of the operation of

this module/component. A list of functions and operations will be a

plus>

Input Connections &
Interfaces

<please write the components from which it receives input (input

dependencies) and mention if possible the available connection

interfaces e.g. API etc.>

Output Connections &
Interfaces

<please write the components to which it sends the results (output

dependencies) and mention also the available interfaces e.g. API

etc.>

Software
Requirements/Development
Language

<specify any software requirements related to the architectural

element, explain the Programming Language that is used during the

development of the component>

Hardware Requirements <specify what hardware requirements are of the module, give

specifications about the hardware requirements which are

necessary for the best functionality of the component>

Status of the development
of the component

<specify if the component is “already developed” or “partially

developed” or “to be developed from scratch”>

WP and Task reference <specify in which WP and specific task the component is developed>

A.2 Platone Hardware Components Detailed Specifications Template
Table 29: Platone Hardware Components Detailed Specifications Template

Name of Device <name of the device>

Description <provide a brief statement of the device>

Functionality <describe how the device functions within the PlatOne workflow>

Measurement <description of the measurement>

Measurement Range <minimum to maximum values that can be measured by

Deliverable D2.1

Platone – GA No 864300 Page 75 (75)

 the device (e.g. -40 to +80 °C)>

Measurement Resolution <level of measurement (e.g. to 0.01 °C)>

Accuracy <accuracy of the measurement (e.g. ±x% of actual reading)>

Data Connections <specify the communication networks and protocols involved e.g.

USB, GSM, WiFi, Bluetooth etc.>

Data Output Format <specify the output format of the sensor>

Data Rate <specify at what rate data is read/extracted/logged>

Data Availability <specify whether data stream is continuous, periodic, on demand

etc.>

	Executive Summary
	Authors, contributors and reviewers
	Table of Contents
	1 Introduction
	1.1 Task 2.1
	1.2 Objectives of the Work Reported in this Deliverable
	1.3 Outline of the Deliverable
	1.4 How to Read this Document

	2 Methodology
	2.1 Use Cases and General requirements
	2.2 Concept architecture design and components description
	2.3 Model for describing the architecture
	2.4 Definition of technical requirements and specifications

	3 Reference Architecture
	3.1 Terminology
	3.2 Concept Architecture
	3.3 Blockchain Technology
	3.3.1 Blockchain in the energy sector
	3.3.2 Blockchain in Platone

	3.4 Architectural components
	3.5 Architectures of the Demos
	3.5.1 Italian Demo Architecture
	3.5.2 Greek Demo Architecture
	3.5.3 German Demo Architecture

	4 Logical View
	4.1 Platone Market Platform
	4.1.1 Blockchain Service Layer and blockchain-driven energy marketplace

	4.2 Platone DSO Technical Platform
	4.2.1 Architectural Principles

	4.3 Platone Blockchain Access Layer
	4.3.1 Platone Blockchain Access Platform
	4.3.2 Platone Shared Customer Database

	4.4 Other Systems
	4.4.1 Components and Services
	4.4.1.1 German Demo
	4.4.1.2 Greek Demo
	4.4.1.3 Italian Demo

	4.4.2 Hardware devices

	5 Process View
	5.1 Interoperability Mechanisms and communication protocols
	5.2 Processes and diagrams

	6 Development View
	7 Deployment View
	7.1 Cloud Hosting and Software-as-a-service model
	7.2 Installation on premises and containerization
	7.3 Deployment Diagrams

	8 Requirements on the Platone Platforms
	9 Conclusion
	10 List of Tables
	11 List of Figures
	12 List of References
	13 List of Abbreviations
	Annex A Platone Components Detailed Specifications Templates
	A.1 Platone Architectural Components Detailed Specifications Template
	A.2 Platone Hardware Components Detailed Specifications Template

